This paper is concerned with the initial-boundary value problem for damped wave equations with a nonlinear convection term in the multi-dimensional half space R n + : u tt u + u t + divf (u) = 0, t 〉 0, x = (x...This paper is concerned with the initial-boundary value problem for damped wave equations with a nonlinear convection term in the multi-dimensional half space R n + : u tt u + u t + divf (u) = 0, t 〉 0, x = (x 1 , x ′ ) ∈ R n + := R + × R n 1 , u(0, x) = u 0 (x) → u + , as x 1 → + ∞ , u t (0, x) = u 1 (x), u(t, 0, x ′ ) = u b , x ′ = (x 2 , x 3 , ··· , x n ) ∈ R n 1 . (I) For the non-degenerate case f ′ 1 (u + ) 〈 0, it was shown in [10] that the above initialboundary value problem (I) admits a unique global solution u(t, x) which converges to the corresponding planar stationary wave φ(x 1 ) uniformly in x 1 ∈ R + as time tends to infinity provided that the initial perturbation and/or the strength of the stationary wave are sufficiently small. And in [10] Ueda, Nakamura, and Kawashima proved the algebraic decay estimates of the tangential derivatives of the solution u(t, x) for t → + ∞ by using the space-time weighted energy method initiated by Kawashima and Matsumura [5] and improved by Nishihkawa [7]. Moreover, by using the same weighted energy method, an additional algebraic convergence rate in the normal direction was obtained by assuming that the initial perturbation decays algebraically. We note, however, that the analysis in [10] relies heavily on the assumption that f ′ (u) 〈 0. The main purpose of this paper isdevoted to discussing the case of f ′ 1 (u b ) ≥ 0 and we show that similar results still hold for such a case. Our analysis is based on some delicate energy estimates.展开更多
This paper is concerned with the convergence rates of the global solutions of the generalized Benjamin-Bona-Mahony-Burgers(BBM-Burgers) equation to the corresponding degenerate boundary layer solutions in the half-s...This paper is concerned with the convergence rates of the global solutions of the generalized Benjamin-Bona-Mahony-Burgers(BBM-Burgers) equation to the corresponding degenerate boundary layer solutions in the half-space.It is shown that the convergence rate is t-(α/4) as t →∞ provided that the initial perturbation lies in H α 1 for α 〈 α(q):= 3 +(2/q),where q is the degeneracy exponent of the flux function.Our analysis is based on the space-time weighted energy method combined with a Hardy type inequality with the best possible constant introduced in [1]展开更多
基金The research of Fan Lili was supported by two grants from the National Natural Science Foundation of China (10871151 10925103)+1 种基金the research of Liu Hongxia was supported by National Natural Science Foundation of China (10871082)the research of Yin Hui was supported by National Natural Sciences Foundation of China (10901064)
文摘This paper is concerned with the initial-boundary value problem for damped wave equations with a nonlinear convection term in the multi-dimensional half space R n + : u tt u + u t + divf (u) = 0, t 〉 0, x = (x 1 , x ′ ) ∈ R n + := R + × R n 1 , u(0, x) = u 0 (x) → u + , as x 1 → + ∞ , u t (0, x) = u 1 (x), u(t, 0, x ′ ) = u b , x ′ = (x 2 , x 3 , ··· , x n ) ∈ R n 1 . (I) For the non-degenerate case f ′ 1 (u + ) 〈 0, it was shown in [10] that the above initialboundary value problem (I) admits a unique global solution u(t, x) which converges to the corresponding planar stationary wave φ(x 1 ) uniformly in x 1 ∈ R + as time tends to infinity provided that the initial perturbation and/or the strength of the stationary wave are sufficiently small. And in [10] Ueda, Nakamura, and Kawashima proved the algebraic decay estimates of the tangential derivatives of the solution u(t, x) for t → + ∞ by using the space-time weighted energy method initiated by Kawashima and Matsumura [5] and improved by Nishihkawa [7]. Moreover, by using the same weighted energy method, an additional algebraic convergence rate in the normal direction was obtained by assuming that the initial perturbation decays algebraically. We note, however, that the analysis in [10] relies heavily on the assumption that f ′ (u) 〈 0. The main purpose of this paper isdevoted to discussing the case of f ′ 1 (u b ) ≥ 0 and we show that similar results still hold for such a case. Our analysis is based on some delicate energy estimates.
基金supported by the "Fundamental Research Funds for the Central Universities"the National Natural Science Foundation of China (10871151)
文摘This paper is concerned with the convergence rates of the global solutions of the generalized Benjamin-Bona-Mahony-Burgers(BBM-Burgers) equation to the corresponding degenerate boundary layer solutions in the half-space.It is shown that the convergence rate is t-(α/4) as t →∞ provided that the initial perturbation lies in H α 1 for α 〈 α(q):= 3 +(2/q),where q is the degeneracy exponent of the flux function.Our analysis is based on the space-time weighted energy method combined with a Hardy type inequality with the best possible constant introduced in [1]