期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
DECAY ESTIMATES OF PLANAR STATIONARY WAVES FOR DAMED WAVE EQUATIONS WITH NONLINEAR CONVECTION IN MULTI-DIMENSIONAL HALF SPACE 被引量:2
1
作者 范丽丽 刘红霞 尹慧 《Acta Mathematica Scientia》 SCIE CSCD 2011年第4期1389-1410,共22页
This paper is concerned with the initial-boundary value problem for damped wave equations with a nonlinear convection term in the multi-dimensional half space R n + : u tt u + u t + divf (u) = 0, t 〉 0, x = (x... This paper is concerned with the initial-boundary value problem for damped wave equations with a nonlinear convection term in the multi-dimensional half space R n + : u tt u + u t + divf (u) = 0, t 〉 0, x = (x 1 , x ′ ) ∈ R n + := R + × R n 1 , u(0, x) = u 0 (x) → u + , as x 1 → + ∞ , u t (0, x) = u 1 (x), u(t, 0, x ′ ) = u b , x ′ = (x 2 , x 3 , ··· , x n ) ∈ R n 1 . (I) For the non-degenerate case f ′ 1 (u + ) 〈 0, it was shown in [10] that the above initialboundary value problem (I) admits a unique global solution u(t, x) which converges to the corresponding planar stationary wave φ(x 1 ) uniformly in x 1 ∈ R + as time tends to infinity provided that the initial perturbation and/or the strength of the stationary wave are sufficiently small. And in [10] Ueda, Nakamura, and Kawashima proved the algebraic decay estimates of the tangential derivatives of the solution u(t, x) for t → + ∞ by using the space-time weighted energy method initiated by Kawashima and Matsumura [5] and improved by Nishihkawa [7]. Moreover, by using the same weighted energy method, an additional algebraic convergence rate in the normal direction was obtained by assuming that the initial perturbation decays algebraically. We note, however, that the analysis in [10] relies heavily on the assumption that f ′ (u) 〈 0. The main purpose of this paper isdevoted to discussing the case of f ′ 1 (u b ) ≥ 0 and we show that similar results still hold for such a case. Our analysis is based on some delicate energy estimates. 展开更多
关键词 Damped wave equation planar stationary wave a priori estimates decay rates space-time weighted energy method
下载PDF
高维Burgers方程外区域问题球对称解的渐近行为
2
作者 杨彤 赵会江 赵青松 《中国科学:数学》 CSCD 北大核心 2021年第6期1057-1072,共16页
本文考虑高维Burgers方程外区域问题球对称解的大时间渐近行为,主要关注在球对称初始扰动下球对称稳态波的非线性稳定性.对这一问题,Hashimoto和Matsumura(2019)给出了保证其球对称稳态波存在性的一个充分条件,但是由于这一稳态波不再... 本文考虑高维Burgers方程外区域问题球对称解的大时间渐近行为,主要关注在球对称初始扰动下球对称稳态波的非线性稳定性.对这一问题,Hashimoto和Matsumura(2019)给出了保证其球对称稳态波存在性的一个充分条件,但是由于这一稳态波不再是单调的,他们只能在更强的假设下证明其非线性稳定性.本文的主要目的是在Hashimoto和Matsumura给出的保证这一稳态波存在的条件下证明其非线性稳定性.此外,还得到了该外区域问题的整体球对称解收敛到上述稳态波的关于时间变元的代数和指数衰减率估计.本文的稳定性分析是基于空间加权的能量方法,问题的关键在于构造适当的权函数来控制由于稳态波的非单调性及边界条件的出现所导致的困难.至于关于时间变元的衰减估计,除了这一空间加权的能量方法之外,还利用了由Kawashima和Matsumura在1985年引入的空间-时间加权的能量方法. 展开更多
关键词 高维Burgers方程 外区域问题 球对称稳态波 非线性稳定性 空间-时间加权的能量方法
原文传递
DEGENERATE BOUNDARY LAYER SOLUTIONS TO THE GENERALIZED BENJAMIN-BONAMAHONY-BURGERS EQUATION
3
作者 肖清华 陈正争 《Acta Mathematica Scientia》 SCIE CSCD 2012年第5期1743-1758,共16页
This paper is concerned with the convergence rates of the global solutions of the generalized Benjamin-Bona-Mahony-Burgers(BBM-Burgers) equation to the corresponding degenerate boundary layer solutions in the half-s... This paper is concerned with the convergence rates of the global solutions of the generalized Benjamin-Bona-Mahony-Burgers(BBM-Burgers) equation to the corresponding degenerate boundary layer solutions in the half-space.It is shown that the convergence rate is t-(α/4) as t →∞ provided that the initial perturbation lies in H α 1 for α 〈 α(q):= 3 +(2/q),where q is the degeneracy exponent of the flux function.Our analysis is based on the space-time weighted energy method combined with a Hardy type inequality with the best possible constant introduced in [1] 展开更多
关键词 generalized BBM-Burgers equation degenerate boundary layer solutions convergence rates Hardy's inequality space-time weighted energy method
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部