Modifications of the Weyl-Heisenberg algebra are proposed where the classical limit corresponds to a metric in (curved) momentum spaces. In the simplest scenario, the 2D de Sitter metric of constant curvature in momen...Modifications of the Weyl-Heisenberg algebra are proposed where the classical limit corresponds to a metric in (curved) momentum spaces. In the simplest scenario, the 2D de Sitter metric of constant curvature in momentum space furnishes a hierarchy of modified uncertainty relations leading to a minimum value for the position uncertainty . The first uncertainty relation of this hierarchy has the same functional form as the stringy modified uncertainty relation with a Planck scale minimum value for at . We proceed with a discussion of the most general curved phase space scenario (cotangent bundle of spacetime) and provide the noncommuting phase space coordinates algebra in terms of the symmetric and nonsymmetric metric components of a Hermitian complex metric , such . Yang’s noncommuting phase-space coordinates algebra, combined with the Schrodinger-Robertson inequalities involving angular momentum eigenstates, reveals how a quantized area operator in units of emerges like it occurs in Loop Quantum Gravity (LQG). Some final comments are made about Fedosov deformation quantization, Noncommutative and Nonassociative gravity.展开更多
针对发送方、接收方及中继都不知道信道信息的无线中继网络系统,已经证明,分布式差分空时码(distributed differential space time codes,DDSTC)是一种有效的编码与解码方式.本文针对DDSTC,首先基于接收到信号的密度函数的推导得到极大...针对发送方、接收方及中继都不知道信道信息的无线中继网络系统,已经证明,分布式差分空时码(distributed differential space time codes,DDSTC)是一种有效的编码与解码方式.本文针对DDSTC,首先基于接收到信号的密度函数的推导得到极大似然解码的具体公式,以弥补现有文献中的不足.其次,为了满足设计准则中提出的矩阵相互可交换的要求,我们通过利用Weyl交互律,得到一种新的DDSTC设计方法,并且将通过举例来说明我们所使用的方法比现有的方法更灵活,尤其是在高维酉矩阵以及中继数量比较多的情况下,更容易得到码本.展开更多
文摘Modifications of the Weyl-Heisenberg algebra are proposed where the classical limit corresponds to a metric in (curved) momentum spaces. In the simplest scenario, the 2D de Sitter metric of constant curvature in momentum space furnishes a hierarchy of modified uncertainty relations leading to a minimum value for the position uncertainty . The first uncertainty relation of this hierarchy has the same functional form as the stringy modified uncertainty relation with a Planck scale minimum value for at . We proceed with a discussion of the most general curved phase space scenario (cotangent bundle of spacetime) and provide the noncommuting phase space coordinates algebra in terms of the symmetric and nonsymmetric metric components of a Hermitian complex metric , such . Yang’s noncommuting phase-space coordinates algebra, combined with the Schrodinger-Robertson inequalities involving angular momentum eigenstates, reveals how a quantized area operator in units of emerges like it occurs in Loop Quantum Gravity (LQG). Some final comments are made about Fedosov deformation quantization, Noncommutative and Nonassociative gravity.
文摘针对发送方、接收方及中继都不知道信道信息的无线中继网络系统,已经证明,分布式差分空时码(distributed differential space time codes,DDSTC)是一种有效的编码与解码方式.本文针对DDSTC,首先基于接收到信号的密度函数的推导得到极大似然解码的具体公式,以弥补现有文献中的不足.其次,为了满足设计准则中提出的矩阵相互可交换的要求,我们通过利用Weyl交互律,得到一种新的DDSTC设计方法,并且将通过举例来说明我们所使用的方法比现有的方法更灵活,尤其是在高维酉矩阵以及中继数量比较多的情况下,更容易得到码本.