Any covering Y→X of a hyperbolic Riemann surface X determines an inclusion of Teichmuller spaces T(X)→T(Y). This map is shown to be an isometry for the Teichmuller metric iff the covering is amenable, and contractin...Any covering Y→X of a hyperbolic Riemann surface X determines an inclusion of Teichmuller spaces T(X)→T(Y). This map is shown to be an isometry for the Teichmuller metric iff the covering is amenable, and contracting iff for any [μ]εT(X), where is the Poincare series operator. Furthermore the inclusion is not a uniform contraction on T(X).展开更多
文摘Any covering Y→X of a hyperbolic Riemann surface X determines an inclusion of Teichmuller spaces T(X)→T(Y). This map is shown to be an isometry for the Teichmuller metric iff the covering is amenable, and contracting iff for any [μ]εT(X), where is the Poincare series operator. Furthermore the inclusion is not a uniform contraction on T(X).
基金Supported by the National Natural Science Foundation of China(11861062)the Natural Science Foundation of Xinjiang Uyghur Autonomous Region(2020D01C048)。