In this paper, a unified model for time-dependent Maxwell equations in dispersive media is considered. The space-time DG method developed in [29] is applied to solve the un-derlying problem. Unconditional L2-stability...In this paper, a unified model for time-dependent Maxwell equations in dispersive media is considered. The space-time DG method developed in [29] is applied to solve the un-derlying problem. Unconditional L2-stability and error estimate of order O?τr+1+hk+1/2? are obtained when polynomials of degree at most r and k are used for the temporal dis-cretization and spatial discretization respectively. 2-D and 3-D numerical examples are given to validate the theoretical results. Moreover, numerical results show an ultra-convergence of order 2r+1 in temporal variable t.展开更多
基金supported by NSFC(11341002)NSFC(11171104,10871066)+1 种基金the Construct Program of the Key Discipline in Hunansupported in part by US National Science Foundation under Grant DMS-1115530
文摘In this paper, a unified model for time-dependent Maxwell equations in dispersive media is considered. The space-time DG method developed in [29] is applied to solve the un-derlying problem. Unconditional L2-stability and error estimate of order O?τr+1+hk+1/2? are obtained when polynomials of degree at most r and k are used for the temporal dis-cretization and spatial discretization respectively. 2-D and 3-D numerical examples are given to validate the theoretical results. Moreover, numerical results show an ultra-convergence of order 2r+1 in temporal variable t.