In the Southeast Margin of the Tibetan Plateau, low-velocity sedimentary layers that would significantly affect the accuracy of the H-κ stacking of receiver functions are widely distributed.In this study, we use tele...In the Southeast Margin of the Tibetan Plateau, low-velocity sedimentary layers that would significantly affect the accuracy of the H-κ stacking of receiver functions are widely distributed.In this study, we use teleseismic waveform data of 475 events from 97 temporary broadband seismometers deployed by ChinArray Phase I to obtain crustal thicknesses and Poisson's ratios within the Chuxiong-Simao Basin and adjacent area, employing an improved method in which the receiver functions are processed through a resonance-removal filter, and the H-κ stacking is time-corrected.Results show that the crustal thickness ranges from 30 to 55 km in the study area, reaching its thickest value in the northwest and thinning toward southwest, southeast and northeast.The apparent variation of crustal thickness around the Red River Fault supports the view of southeastern escape of the Tibetan Plateau.Relatively thin crustal thickness in the zone between Chuxiong City and the Red River Fault indicates possible uplift of mantle in this area.The positive correlation between crustal thickness and Poisson's ratio is likely to be related to lower crust thickening.Comparison of results obtained from different methods shows that the improved method used in our study can effectively remove the reverberation effect of sedimentary layers.展开更多
There are many active faults in the southeast margin of Tibetan Plateau,where three large active faults zones,the Longmenshan,Xianshuihe and Anninghe,merge to form a"Y"shape.Strong crustal deformation and a ...There are many active faults in the southeast margin of Tibetan Plateau,where three large active faults zones,the Longmenshan,Xianshuihe and Anninghe,merge to form a"Y"shape.Strong crustal deformation and a complicated fault distribution accompany strong earthquake activity in this zone.In this paper,we investigate a multi-scale gravity anomaly in the southeastern margin of the Tibetan Plateau using the wavelet transform;we find that the pattern of the gravity field is closely related to the fault system in the study area.Analyzing the characteristics of this Bouguer gravity anomaly at different orders indicates that the eastern Himalayan syntaxis has produced a strong eastward push during its northward movement,resulting in a shortening of the crust from west to east and a rapid uplift of the Tibetan Plateau.The Songpan–Garzêand Sichuan–Yunnan blocks have been forced to slip and extrude southward and eastward laterally.The distributions of seven large earthquakes from 1970 to 2018 reflects the relationship between large earthquakes and characteristics of the gravity anomaly.Comparing the tectonic backgrounds of several earthquakes reveals that the large earthquakes occur usually in the high gravity anomaly gradient zone,which corresponds in general to the boundary zones of the blocks.We infer that large earthquakes occur primarily in high Bouguer gravity anomaly zones in the upper crust,while low Bouguer gravity anomalies encompass the lower crust and the uppermost mantle.展开更多
在青藏高原东南缘,前人使用大地电磁探测和地震学方法得出的结果都揭示了可能存在部分熔融状态的地壳流,而这种地下熔融体与周围物质的作用可能引起了地下强电流异常,进一步导致地表地磁响应.基于连续的地磁观测,发现2018年7月31日在川...在青藏高原东南缘,前人使用大地电磁探测和地震学方法得出的结果都揭示了可能存在部分熔融状态的地壳流,而这种地下熔融体与周围物质的作用可能引起了地下强电流异常,进一步导致地表地磁响应.基于连续的地磁观测,发现2018年7月31日在川滇块体周边出现大范围的地磁Z分量日变化短时畸变,畸变发生后100天内发生了4次5级以上地震.为了定量研究这一现象,本文基于Biot-Savart定理和采用SVD(Singular Value Decomposition,奇异值分解)的阻尼最小二乘法对地磁日变化短时畸变数据开展反演.结果显示:(1)以大地电磁测深给出的电性模型作为初始条件,反演得到的电流强度为3700~5000 A,有效深度为25~60 km;(2)地下畸变电流的空间分布位置和深度和地下电性高导体分布一致,与前人给出的地壳流位置吻合;(3)地壳流偶然微小运动可能引起了大范围的强电流,这种短时存在的高强度电流沿高导带分布,可能是地磁日变化短时畸变的源电流;(4)推测深部地壳流的运动具有传递应力作用,参与诱发了100天内发生多次5级以上地震.对源电流进行反演的定量化工作,以地下电流的方式佐证了可能存在地壳流.展开更多
基金supported by the National Natural Science Foundation of China (Project 41730212)the Basic Research Project of the Institute of Earthquake Forecasting, China Earthquake Administration (2017IES0102)
文摘In the Southeast Margin of the Tibetan Plateau, low-velocity sedimentary layers that would significantly affect the accuracy of the H-κ stacking of receiver functions are widely distributed.In this study, we use teleseismic waveform data of 475 events from 97 temporary broadband seismometers deployed by ChinArray Phase I to obtain crustal thicknesses and Poisson's ratios within the Chuxiong-Simao Basin and adjacent area, employing an improved method in which the receiver functions are processed through a resonance-removal filter, and the H-κ stacking is time-corrected.Results show that the crustal thickness ranges from 30 to 55 km in the study area, reaching its thickest value in the northwest and thinning toward southwest, southeast and northeast.The apparent variation of crustal thickness around the Red River Fault supports the view of southeastern escape of the Tibetan Plateau.Relatively thin crustal thickness in the zone between Chuxiong City and the Red River Fault indicates possible uplift of mantle in this area.The positive correlation between crustal thickness and Poisson's ratio is likely to be related to lower crust thickening.Comparison of results obtained from different methods shows that the improved method used in our study can effectively remove the reverberation effect of sedimentary layers.
基金supported by the National Natural Science Foundation of China(Project 41730212)the Basic Research Project of the Institute of Earthquake Forecasting,China Earthquake Adm inistration(Grant No.2017IES0102)
文摘There are many active faults in the southeast margin of Tibetan Plateau,where three large active faults zones,the Longmenshan,Xianshuihe and Anninghe,merge to form a"Y"shape.Strong crustal deformation and a complicated fault distribution accompany strong earthquake activity in this zone.In this paper,we investigate a multi-scale gravity anomaly in the southeastern margin of the Tibetan Plateau using the wavelet transform;we find that the pattern of the gravity field is closely related to the fault system in the study area.Analyzing the characteristics of this Bouguer gravity anomaly at different orders indicates that the eastern Himalayan syntaxis has produced a strong eastward push during its northward movement,resulting in a shortening of the crust from west to east and a rapid uplift of the Tibetan Plateau.The Songpan–Garzêand Sichuan–Yunnan blocks have been forced to slip and extrude southward and eastward laterally.The distributions of seven large earthquakes from 1970 to 2018 reflects the relationship between large earthquakes and characteristics of the gravity anomaly.Comparing the tectonic backgrounds of several earthquakes reveals that the large earthquakes occur usually in the high gravity anomaly gradient zone,which corresponds in general to the boundary zones of the blocks.We infer that large earthquakes occur primarily in high Bouguer gravity anomaly zones in the upper crust,while low Bouguer gravity anomalies encompass the lower crust and the uppermost mantle.
文摘在青藏高原东南缘,前人使用大地电磁探测和地震学方法得出的结果都揭示了可能存在部分熔融状态的地壳流,而这种地下熔融体与周围物质的作用可能引起了地下强电流异常,进一步导致地表地磁响应.基于连续的地磁观测,发现2018年7月31日在川滇块体周边出现大范围的地磁Z分量日变化短时畸变,畸变发生后100天内发生了4次5级以上地震.为了定量研究这一现象,本文基于Biot-Savart定理和采用SVD(Singular Value Decomposition,奇异值分解)的阻尼最小二乘法对地磁日变化短时畸变数据开展反演.结果显示:(1)以大地电磁测深给出的电性模型作为初始条件,反演得到的电流强度为3700~5000 A,有效深度为25~60 km;(2)地下畸变电流的空间分布位置和深度和地下电性高导体分布一致,与前人给出的地壳流位置吻合;(3)地壳流偶然微小运动可能引起了大范围的强电流,这种短时存在的高强度电流沿高导带分布,可能是地磁日变化短时畸变的源电流;(4)推测深部地壳流的运动具有传递应力作用,参与诱发了100天内发生多次5级以上地震.对源电流进行反演的定量化工作,以地下电流的方式佐证了可能存在地壳流.