Methanethiol(MT) produced from terrestrial soils can have important effects on atmospheric chemistry and ecosystem-level processes, and it originates mainly from the metabolism of sulfur-containing amino acids by micr...Methanethiol(MT) produced from terrestrial soils can have important effects on atmospheric chemistry and ecosystem-level processes, and it originates mainly from the metabolism of sulfur-containing amino acids by microorganisms.Methanethiol producing bacteria(MPB) were enriched and isolated from agricultural soils in a modified basal medium containing methionine(Met) as the sole carbon source.The isolates were identified as Bacillus sp.WH-R1, WH-R2, and WH-R3; Arthrobacter sp.SZLB-W3; and Delftia sp.CHZG-R4 based on cell morphology, physiological and biochemical characteristics, and 16 S r RNA sequence analysis.Delftia sp.CHZG-R4 was identified as a novel strain producing MT using Met as a precursor, and it had the most active MT-producing potential, with the production of MT being 21.8 μg at 30℃ and pH 7.0.Optimal MT production was observed at 35℃ and pH6.0, with 51.3% of sulfur content in Met being converted into MT.Under these conditions, MT production changed according to the supply of both carbon and nitrogen sources.The addition of 2 g L^(-1) each of starch, sucrose, urea, and potassium nitrate promoted MT production by more than 10%, whereas addition of 2 g L^(-1) each of ammonia sulfate and peptone decreased MT production by16% and 87%, respectively.This is the first study to report MT production by Delftia sp.CHZG-R4, providing useful information for the microbial mechanism of MT production from agricultural soils.Our findings also contribute to improving our knowledge of the function of Delftia sp.CHZG-R4.展开更多
基金supported by the Natural Science Foundation of China(Nos.41025012,41273095,and 41103067)the Major Science and Technology Program for Water Pollution Control and Treatment,China(No.2015ZX07204-007-007)
文摘Methanethiol(MT) produced from terrestrial soils can have important effects on atmospheric chemistry and ecosystem-level processes, and it originates mainly from the metabolism of sulfur-containing amino acids by microorganisms.Methanethiol producing bacteria(MPB) were enriched and isolated from agricultural soils in a modified basal medium containing methionine(Met) as the sole carbon source.The isolates were identified as Bacillus sp.WH-R1, WH-R2, and WH-R3; Arthrobacter sp.SZLB-W3; and Delftia sp.CHZG-R4 based on cell morphology, physiological and biochemical characteristics, and 16 S r RNA sequence analysis.Delftia sp.CHZG-R4 was identified as a novel strain producing MT using Met as a precursor, and it had the most active MT-producing potential, with the production of MT being 21.8 μg at 30℃ and pH 7.0.Optimal MT production was observed at 35℃ and pH6.0, with 51.3% of sulfur content in Met being converted into MT.Under these conditions, MT production changed according to the supply of both carbon and nitrogen sources.The addition of 2 g L^(-1) each of starch, sucrose, urea, and potassium nitrate promoted MT production by more than 10%, whereas addition of 2 g L^(-1) each of ammonia sulfate and peptone decreased MT production by16% and 87%, respectively.This is the first study to report MT production by Delftia sp.CHZG-R4, providing useful information for the microbial mechanism of MT production from agricultural soils.Our findings also contribute to improving our knowledge of the function of Delftia sp.CHZG-R4.