At present,GNSS-Acoustic(GNSS-A)combined technology is widely used in positioning for seafloor geodetic stations.Based on Sound Velocity Profiles(SVPs)data,the equal gradient acoustic ray-tracing method is applied in ...At present,GNSS-Acoustic(GNSS-A)combined technology is widely used in positioning for seafloor geodetic stations.Based on Sound Velocity Profiles(SVPs)data,the equal gradient acoustic ray-tracing method is applied in high-precision position inversion.However,because of the discreteness of the SVPs used in the forementioned method,it ignores the continuous variation of sound velocity structure in time domain,which worsens the positioning accuracy.In this study,the time-domain variation of Sound Speed Structure(SSS)has been considered,and the cubic B-spline function is applied to characterize the perturbed sound velocity.Based on the ray-tracing theory,an inversion model of“stepwise iteration&progressive corrections”for both positioning and sound speed information is proposed,which conducts the gradual correction of seafloor geodetic station coordinates and disturbed sound velocity.The practical data was used to test the effectiveness of our method.The results show that the Root Mean Square(RMS)errors of the residual values of the traditional methods without sound velocity correction,based on quadratic polynomial correction and based on cubic B-spline function correction are 1.43 ms,0.44 ms and 0.21 ms,respectively.The inversion model with sound velocity correction can effectively eliminate the systematic error caused by the change of SSS,and significantly improve the positioning accuracy of the seafloor geodetic stations.展开更多
针对阵列中传感器阵元对声源定位性能的贡献率不同,开展了基于Hanbury Brown and Twiss干涉定位的阵列优化研究。首先,根据声场HBT干涉定位原理,建立了八元直线传感阵列的声学定位理论模型。其次,以阵列定位误差在1%以内为目标,对八元...针对阵列中传感器阵元对声源定位性能的贡献率不同,开展了基于Hanbury Brown and Twiss干涉定位的阵列优化研究。首先,根据声场HBT干涉定位原理,建立了八元直线传感阵列的声学定位理论模型。其次,以阵列定位误差在1%以内为目标,对八元直线传感阵列进行拓扑仿真优化,得到5种四元直线传感阵列。最后,通过实验验证,仿真优化得到的5种四元直线传感阵列中有2种阵列的定位误差在1%以内。通过对传感阵列拓扑优化的研究,能够降低传感器的个数,且保证对声源的定位性能不变,从而减少了阵列信号处理的复杂性。展开更多
基金National Natural Science Foundation of China(Nos.41931076,42174020)Laoshan Laboratory(No.LSKJ202205101)State Key Laboratory of Geo-Information Engineering(No.SKLGIE2020-M-1-1)。
文摘At present,GNSS-Acoustic(GNSS-A)combined technology is widely used in positioning for seafloor geodetic stations.Based on Sound Velocity Profiles(SVPs)data,the equal gradient acoustic ray-tracing method is applied in high-precision position inversion.However,because of the discreteness of the SVPs used in the forementioned method,it ignores the continuous variation of sound velocity structure in time domain,which worsens the positioning accuracy.In this study,the time-domain variation of Sound Speed Structure(SSS)has been considered,and the cubic B-spline function is applied to characterize the perturbed sound velocity.Based on the ray-tracing theory,an inversion model of“stepwise iteration&progressive corrections”for both positioning and sound speed information is proposed,which conducts the gradual correction of seafloor geodetic station coordinates and disturbed sound velocity.The practical data was used to test the effectiveness of our method.The results show that the Root Mean Square(RMS)errors of the residual values of the traditional methods without sound velocity correction,based on quadratic polynomial correction and based on cubic B-spline function correction are 1.43 ms,0.44 ms and 0.21 ms,respectively.The inversion model with sound velocity correction can effectively eliminate the systematic error caused by the change of SSS,and significantly improve the positioning accuracy of the seafloor geodetic stations.
文摘针对阵列中传感器阵元对声源定位性能的贡献率不同,开展了基于Hanbury Brown and Twiss干涉定位的阵列优化研究。首先,根据声场HBT干涉定位原理,建立了八元直线传感阵列的声学定位理论模型。其次,以阵列定位误差在1%以内为目标,对八元直线传感阵列进行拓扑仿真优化,得到5种四元直线传感阵列。最后,通过实验验证,仿真优化得到的5种四元直线传感阵列中有2种阵列的定位误差在1%以内。通过对传感阵列拓扑优化的研究,能够降低传感器的个数,且保证对声源的定位性能不变,从而减少了阵列信号处理的复杂性。