IO Cnc was classified to be a new G-type(G0)W UMa-type eclipsing binary system.Our first multicolor photometric solutions show that IO Cnc is a new W-subtype shallow contact binary with a fill-out factor of f=16.1%and...IO Cnc was classified to be a new G-type(G0)W UMa-type eclipsing binary system.Our first multicolor photometric solutions show that IO Cnc is a new W-subtype shallow contact binary with a fill-out factor of f=16.1%and a low mass ratio of q=3.12(or 1/q=0.32).During orbital period investigations,a cyclic variation and a downward parabolic variation with a rate of(-1.28±0.43)×10^(-7) d yr^(-1) was discovered in the observed–calculated(O-C)curve.The cyclic variation was analyzed by the light travel time effect(LTTE)via a potential red dwarf companion star,an orbital semi-major axis shorter than 4.88±0.82 AU was obtained.Finally,we collect physical parameters of a sample of 50 G-type shallow contact binaries(f≤20%),it is suggested that most of the G-type shallow contact binaries are undergoing a longterm and periodic orbital period changes,especially more systems show long-term decreases.The long-term orbital period decrease indicates that IO Cnc is in a mass transferring from the more massive component to the less massive one.With the long-term decrease of the orbital period,this shallow contact binary will evolve into a deeper contact one.展开更多
Two sets of CCD photometric observations for contact binary TU Boo were obtained in 2020 and 2021.Different from its asymmetric light curves published from the literature,our BVRcIc-band curves show that the heights o...Two sets of CCD photometric observations for contact binary TU Boo were obtained in 2020 and 2021.Different from its asymmetric light curves published from the literature,our BVRcIc-band curves show that the heights of maximum are almost equal.These distortions of light curves possibly indicate that the components were active in past 25 yr,but they were stable in the last two years.For total-eclipse binary TU Boo,due to some star-spots on the surface of the components,the physical structure obtained by many investigators are different.Therefore,the symmetric multi-color light curves in 2020,2021 are important for understanding configuration and evolution of this system.By using the Wilson–Devinney program,it is confirmed that TU Boo is an A-type shallow-contact binary with the temperature difference ofΔT=152 K and fill-out of f=14.67%.In the O−C diagram of orbital period analysis,a cyclic oscillation superimposed on a continuous decrease was determined.The long-term decreasing is often explained by the mass transfer from the more massive star to less massive one,this system will evolve into a deeper contact binary with time.The cyclic oscillations computed from much more CCD times of light minimum maybe result from the light-travel time effect via the presence of a third body.These characters of structure,evolution and ternary belong to typical A-type W UMa binaries with spectral G.展开更多
We wrote and used an automated flare detection Python script to search for super-flares on main sequence stars of types A,F,G,K and M in Kepler's long-cadence data from Q0 to Q17.We studied the statistical propert...We wrote and used an automated flare detection Python script to search for super-flares on main sequence stars of types A,F,G,K and M in Kepler's long-cadence data from Q0 to Q17.We studied the statistical properties of the occurrence rate of super-flares.For the G-type data set,we compared our results with the previous results of Okamoto et al.by splitting the data set into four rotational bands.We found similar power-law indices for the flare frequency distribution.Hence,we show that inclusion of a high-pass filter,sample biases,gyrochronology and completeness of flare detection is of no significance,as our results are similar to those of Okamoto et al.We estimated that a super-flare on G-type dwarfs with energy of 10^(35) erg occurs on a star once every 4360 yr.We found 4637 super-flares on 1896 G-type dwarfs.Moreover,we identified 321,1125,4538 and 5445 super-flares on 136,522,770 and 312 dwarfs of types A,F,K and M,respectively.We ascertained that the occurrence rate(dN/dE)of super-flares versus flare energy,E,shows a power-law distribution with dN/dE∝E^(-α),whereα■2.0 to 2.1 for the spectral types from F-type to M-type stars.In contrast,the obtainedα■1.3 for A-type stars suggests that the flare conditions differ from those of the other spectral-type stars.We note an increase in flare incidence rate in F-type to M-type stars and a decrease in A-type to F-type stars.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.11873017 and 11933008)the Science and Technology Talents and Platform Plan of Yunnan province(2018HB070)+1 种基金the Yunnan Natural Science Foundation(No.2018FB006)partially supported by the Open Project Program of the Key Laboratory of Optical Astronomy,National Astronomical Observatories,Chinese Academy of Sciences。
文摘IO Cnc was classified to be a new G-type(G0)W UMa-type eclipsing binary system.Our first multicolor photometric solutions show that IO Cnc is a new W-subtype shallow contact binary with a fill-out factor of f=16.1%and a low mass ratio of q=3.12(or 1/q=0.32).During orbital period investigations,a cyclic variation and a downward parabolic variation with a rate of(-1.28±0.43)×10^(-7) d yr^(-1) was discovered in the observed–calculated(O-C)curve.The cyclic variation was analyzed by the light travel time effect(LTTE)via a potential red dwarf companion star,an orbital semi-major axis shorter than 4.88±0.82 AU was obtained.Finally,we collect physical parameters of a sample of 50 G-type shallow contact binaries(f≤20%),it is suggested that most of the G-type shallow contact binaries are undergoing a longterm and periodic orbital period changes,especially more systems show long-term decreases.The long-term orbital period decrease indicates that IO Cnc is in a mass transferring from the more massive component to the less massive one.With the long-term decrease of the orbital period,this shallow contact binary will evolve into a deeper contact one.
基金sponsored by Natural Science Foundation of Xinjiang Uygur Autonomous Region (No.2022DO1A164)the Joint Research Found (No.U1831109)in Astronomy under cooperative agreement between the National Natural Science Foundation of China (NSFC)and Chinese Academy of Sciences (CAS)the Natural Science Foundation of Shandong Province (No.ZR2020QA048)。
文摘Two sets of CCD photometric observations for contact binary TU Boo were obtained in 2020 and 2021.Different from its asymmetric light curves published from the literature,our BVRcIc-band curves show that the heights of maximum are almost equal.These distortions of light curves possibly indicate that the components were active in past 25 yr,but they were stable in the last two years.For total-eclipse binary TU Boo,due to some star-spots on the surface of the components,the physical structure obtained by many investigators are different.Therefore,the symmetric multi-color light curves in 2020,2021 are important for understanding configuration and evolution of this system.By using the Wilson–Devinney program,it is confirmed that TU Boo is an A-type shallow-contact binary with the temperature difference ofΔT=152 K and fill-out of f=14.67%.In the O−C diagram of orbital period analysis,a cyclic oscillation superimposed on a continuous decrease was determined.The long-term decreasing is often explained by the mass transfer from the more massive star to less massive one,this system will evolve into a deeper contact binary with time.The cyclic oscillations computed from much more CCD times of light minimum maybe result from the light-travel time effect via the presence of a third body.These characters of structure,evolution and ternary belong to typical A-type W UMa binaries with spectral G.
基金operated by the Association of Universities for Research in Astronomy,Inc.,under NASA contract NAS5-26555provided by the NASA Office of Space Science via grant NNX13AC07Gthe financial support of her PhD scholarship,held at Queen Mary University of London。
文摘We wrote and used an automated flare detection Python script to search for super-flares on main sequence stars of types A,F,G,K and M in Kepler's long-cadence data from Q0 to Q17.We studied the statistical properties of the occurrence rate of super-flares.For the G-type data set,we compared our results with the previous results of Okamoto et al.by splitting the data set into four rotational bands.We found similar power-law indices for the flare frequency distribution.Hence,we show that inclusion of a high-pass filter,sample biases,gyrochronology and completeness of flare detection is of no significance,as our results are similar to those of Okamoto et al.We estimated that a super-flare on G-type dwarfs with energy of 10^(35) erg occurs on a star once every 4360 yr.We found 4637 super-flares on 1896 G-type dwarfs.Moreover,we identified 321,1125,4538 and 5445 super-flares on 136,522,770 and 312 dwarfs of types A,F,K and M,respectively.We ascertained that the occurrence rate(dN/dE)of super-flares versus flare energy,E,shows a power-law distribution with dN/dE∝E^(-α),whereα■2.0 to 2.1 for the spectral types from F-type to M-type stars.In contrast,the obtainedα■1.3 for A-type stars suggests that the flare conditions differ from those of the other spectral-type stars.We note an increase in flare incidence rate in F-type to M-type stars and a decrease in A-type to F-type stars.