期刊文献+
共找到73篇文章
< 1 2 4 >
每页显示 20 50 100
菲涅耳太阳能聚光系统跟踪倾角的矢量算法 被引量:16
1
作者 杜春旭 王普 +1 位作者 马重芳 吴玉庭 《太阳能学报》 EI CAS CSCD 北大核心 2011年第6期831-835,共5页
提出了线性菲涅耳反射装置中太阳跟踪倾角的计算方法。该聚光装置中每一个反射镜面(简称镜元)需实时跟踪太阳,使太阳入射光反射至固定位置的线性吸热器上。但是,从目前的太阳位置算法中得到的太阳高度角、方位角并不能直接用来控制跟踪... 提出了线性菲涅耳反射装置中太阳跟踪倾角的计算方法。该聚光装置中每一个反射镜面(简称镜元)需实时跟踪太阳,使太阳入射光反射至固定位置的线性吸热器上。但是,从目前的太阳位置算法中得到的太阳高度角、方位角并不能直接用来控制跟踪,必须进行复杂计算,得到每一镜元相应的跟踪倾角,然后控制电机使其旋转至相应位置。通过将太阳矢量适当分解,简化计算得到适合于菲涅耳太阳能聚光装置反射定位的旋转倾角并经实验验证。 展开更多
关键词 线性菲涅尔反射装置 太阳跟踪 矢量法 跟踪倾角
下载PDF
An anomaly detection method for spacecraft solar arrays based on the ILS-SVM model 被引量:2
2
作者 WANG Yu ZHANG Tao +1 位作者 HUI Jianjiang LIU Yajie 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第2期515-529,共15页
Solar arrays are important and indispensable parts of spacecraft and provide energy support for spacecraft to operate in orbit and complete on-orbit missions.When a spacecraft is in orbit,because the solar array is ex... Solar arrays are important and indispensable parts of spacecraft and provide energy support for spacecraft to operate in orbit and complete on-orbit missions.When a spacecraft is in orbit,because the solar array is exposed to the harsh space environment,with increasing working time,the performance of its internal electronic components gradually degrade until abnormal damage occurs.This damage makes solar array power generation unable to fully meet the energy demand of a spacecraft.Therefore,timely and accurate detection of solar array anomalies is of great significance for the on-orbit operation and maintenance management of spacecraft.In this paper,we propose an anomaly detection method for spacecraft solar arrays based on the integrated least squares support vector machine(ILS-SVM)model:it selects correlated telemetry data from spacecraft solar arrays to form a training set and extracts n groups of training subsets from this set,then gets n corresponding least squares support vector machine(LS-SVM)submodels by training on these training subsets,respectively;after that,the ILS-SVM model is obtained by integrating these submodels through a weighting operation to increase the prediction accuracy and so on;finally,based on the obtained ILS-SVM model,a parameterfree and unsupervised anomaly determination method is proposed to detect the health status of solar arrays.We use the telemetry data set from a satellite in orbit to carry out experimental verification and find that the proposed method can diagnose solar array anomalies in time and can capture the signs before a solar array anomaly occurs,which reflects the applicability of the method. 展开更多
关键词 spacecraft solar array anomaly detection integrated least squares support vector machine(ILS-SVM) induced ordered weighted average(IOWA)operator integrated model
下载PDF
A vector autoregression weather model for electricity supply and demand modeling 被引量:4
3
作者 Yixian LIU Matthew C.ROBERTS Ramteen SIOSHANSI 《Journal of Modern Power Systems and Clean Energy》 SCIE EI 2018年第4期763-776,共14页
Weather forecasting is crucial to both the demand and supply sides of electricity systems. Temperature has a great effect on the demand side. Moreover, solar and wind are very promising renewable energy sources and ar... Weather forecasting is crucial to both the demand and supply sides of electricity systems. Temperature has a great effect on the demand side. Moreover, solar and wind are very promising renewable energy sources and are, thus, important on the supply side. In this paper, a large vector autoregression(VAR) model is built to forecast three important weather variables for 61 cities around the United States. The three variables at all locations are modeled as response variables. Lag terms are used to capture the relationship between observations in adjacent periods and daily and annual seasonality are modeled to consider the correlation between the same periods in adjacent days and years. We estimate the VAR model with16 years of hourly historical data and use two additional years of data for out-of-sample validation. Forecasts of up to six-hours-ahead are generated with good forecasting performance based on mean absolute error, root mean square error, relative root mean square error, and skill scores. Our VAR model gives forecasts with skill scoresthat are more than double the skill scores of other forecasting models in the literature. Our model also provides forecasts that outperform persistence forecasts by between6% and 80% in terms of mean absolute error. Our results show that the proposed time series approach is appropriate for very short-term forecasting of hourly solar radiation,temperature, and wind speed. 展开更多
关键词 Forecasting solar IRRADIANCE WIND speed Temperature vector AUTOREGRESSION SKILL SCORES
原文传递
基于轨道系太阳矢量的卫星自主任务规划设计 被引量:1
4
作者 王国华 常亮 +2 位作者 吴会英 唐涛 王明亮 《北京理工大学学报》 EI CAS CSCD 北大核心 2023年第6期609-615,共7页
为了减少地面人工操作失误带来影响,增加卫星在轨任务执行成功率,本文对太阳同步近圆轨道卫星星上自主任务规划进行了探讨,提出了一种根据轨道系太阳矢量规划载荷任务的方法.利用轨道系太阳矢量,推导卫星与太阳的相对位置和角度变化,计... 为了减少地面人工操作失误带来影响,增加卫星在轨任务执行成功率,本文对太阳同步近圆轨道卫星星上自主任务规划进行了探讨,提出了一种根据轨道系太阳矢量规划载荷任务的方法.利用轨道系太阳矢量,推导卫星与太阳的相对位置和角度变化,计算出卫星载荷任务的起止时刻等关键点,进而控制星上单机进行任务观测.结果表明,该方法可显著减少卫星执行任务时所需要地面上注的指令条数,减少由于地面上注时延带来的观测误差,本文所提方法可为相关卫星自主任务规划提供工程借鉴,为未来提供星上在轨智能决策提供理论参考. 展开更多
关键词 星载软件 自主任务规划 太阳矢量 指令序列
下载PDF
Smart Monitoring of Solar Photovoltaic Panels by the Approach of Machine Learning
5
作者 Xing Wang Wenxian Yang Jinxin Wang 《Journal of Dynamics, Monitoring and Diagnostics》 2023年第3期190-197,共8页
The exploitation of renewable energy has become a pressing task due to climate change and the recent energy crisis caused by regional conflicts.This has further accelerated the rapid development of the global photovol... The exploitation of renewable energy has become a pressing task due to climate change and the recent energy crisis caused by regional conflicts.This has further accelerated the rapid development of the global photovoltaic(PV)market,thereby making the management and maintenance of solar photovoltaic(SPV)panels a new area of business as neglecting it may lead to significant financial losses and failure to combat climate change and the energy crisis.SPV panels face many risks that may degrade their power generation performance,damage their structures,or even cause the complete loss of their power generation capacity during their long service life.It is hoped that these problems can be identified and resolved as soon as possible.However,this is a challenging task as a solar power plant(SPP)may contain hundreds even thousands of SPV panels.To provide a potential solution for this issue,a smart drone-based SPV panel condition monitoring(CM)technique has been studied in this paper.In the study,the U-Net neural network(UNNN),which is ideal for undertaking image segmentation tasks and good at handling small sample size problem,is adopted to automatically create mask images from the collected true color thermal infrared images.The support vector machine(SVM),which performs very well in highdimensional feature spaces and is therefore good at image recognition,is employed to classifying the mask images generated by the UNNN.The research result has shown that with the aid of the UNNN and SVM,the thermal infrared images that are remotely collected by drones from SPPs can be automatically and effectively processed,analyzed,and classified with reasonable accuracy(over 80%).Particularly,the mask images produced by the trained UNNN,which contain less interference items than true color thermal infrared images,significantly benefit the assessing accuracy of the health state of SPV panels.It is anticipated that the technical approach presented in this paper will serve as an inspiration for the exploration of more advanced and dependa 展开更多
关键词 condition monitoring neural network solar photovoltaic panels support vector machine
下载PDF
Application of data science in the prediction of solar energy for the Amazon basin:a study case
6
作者 AndréLuis Ferreira Marques Márcio JoséTeixeira +1 位作者 Felipe Valencia de Almeida Pedro Luiz Pizzigatti Corrêa 《Clean Energy》 EI CSCD 2023年第6期1344-1355,共12页
The need for renewable energy sources has challenged most countries to comply with environmental protection actions and to handle climate change.Solar energy figures as a natural option,despite its intermittence.Brazi... The need for renewable energy sources has challenged most countries to comply with environmental protection actions and to handle climate change.Solar energy figures as a natural option,despite its intermittence.Brazil has a green energy matrix with significant expansion of solar form in recent years.To preserve the Amazon basin,the use of solar energy can help communities and cities improve their living standards without new hydroelectric units or even to burn biomass,avoiding harsh environmental consequences.The novelty of this work is using data science with machine-learning tools to predict the solar incidence(W.h/m^(2))in four cities in Amazonas state(north-west Brazil),using data from NASA satellites within the period of 2013-22.Decision-tree-based models and vector autoregressive(time-series)models were used with three time aggregations:day,week and month.The predictor model can aid in the economic assessment of solar energy in the Amazon basin and the use of satellite data was encouraged by the lack of data from ground stations.The mean absolute error was selected as the output indicator,with the lowest values obtained close to 0.20,from the adaptive boosting and light gradient boosting algorithms,in the same order of magnitude of similar references. 展开更多
关键词 solar energy renewable energy Amazon basin machine learning time series data science decision-trees ensemble vector autoregression
原文传递
太阳能聚光热发电系统跟踪角的矢量分析 被引量:2
7
作者 杜春旭 王普 +1 位作者 吴玉庭 马重芳 《水电能源科学》 北大核心 2014年第2期197-200,178,共5页
针对太阳能聚光热发电系统中跟踪装置的跟踪角计算方法及相应的涉及几何光学的计算公式(如反射光方向、入射角等)均不相同的问题,通过矢量法简化了理论推导过程,给出塔式、槽式、碟式、线性菲涅耳型四种主要的太阳能聚光反射装置的跟踪... 针对太阳能聚光热发电系统中跟踪装置的跟踪角计算方法及相应的涉及几何光学的计算公式(如反射光方向、入射角等)均不相同的问题,通过矢量法简化了理论推导过程,给出塔式、槽式、碟式、线性菲涅耳型四种主要的太阳能聚光反射装置的跟踪角、入射角及反射光的矢量计算公式,可为实际工程应用及分析提供必要的理论基础。 展开更多
关键词 太阳能热发电 太阳跟踪 矢量法 跟踪角
下载PDF
Simulation of Daily Diffuse Solar Radiation Based on Three Machine Learning Models 被引量:2
8
作者 Jianhua Dong Lifeng Wu +3 位作者 Xiaogang Liu Cheng Fan Menghui Leng Qiliang Yang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第4期49-73,共25页
Solar radiation is an important parameter in the fields of computer modeling,engineering technology and energy development.This paper evaluated the ability of three machine learning models,i.e.,Extreme Gradient Boosti... Solar radiation is an important parameter in the fields of computer modeling,engineering technology and energy development.This paper evaluated the ability of three machine learning models,i.e.,Extreme Gradient Boosting(XGBoost),Support Vector Machine(SVM)and Multivariate Adaptive Regression Splines(MARS),to estimate the daily diffuse solar radiation(Rd).The regular meteorological data of 1966-2015 at five stations in China were taken as the input parameters(including mean average temperature(Ta),theoretical sunshine duration(N),actual sunshine duration(n),daily average air relative humidity(RH),and extra-terrestrial solar radiation(Ra)).And their estimation accuracies were subjected to comparative analysis.The three models were first trained using meteorological data from 1966 to 2000.Then,the 2001-2015 data was used to test the trained machine learning model.The results show that the XGBoost had better accuracy than the other two models in coefficient of determination(R2),root mean square error(RMSE),mean bias error(MBE)and normalized root mean square error(NRMSE).The MARS performed better in the training phase than the testing phase,but became less accurate in the testing phase,with the R2 value falling by 2.7-16.9%on average.By contrast,the R2 values of SVM and XGBoost increased by 2.9-12.2%and 1.9-14.3%,respectively.Despite trailing slightly behind the SVM at the Beijing station,the XGBoost showed good performance at the rest of the stations in the two phases.In the training phase,the accuracy growth is small but observable.In addition,the XGBoost had a slightly lower RMSE than the SVM,a signal of its edge in stability.Therefore,the three machine learning models can estimate the daily Rd based on local inputs and the XGBoost stands out for its excellent performance and stability. 展开更多
关键词 Diffuse solar radiation extreme gradient boosting multivariate adaptive regression splines statistical indices support vector machine
下载PDF
A comprehensive review and analysis of solar forecasting techniques 被引量:1
9
作者 Pardeep SINGLA Manoj DUHAN Sumit SAROHA 《Frontiers in Energy》 SCIE CSCD 2022年第2期187-223,共37页
In the last two decades,renewable energy has been paid immeasurable attention to toward the attainment of electricity requirements for domestic,industrial,and agriculture sectors.Solar forecasting plays a vital role i... In the last two decades,renewable energy has been paid immeasurable attention to toward the attainment of electricity requirements for domestic,industrial,and agriculture sectors.Solar forecasting plays a vital role in smooth operation,scheduling,and balancing of electricity production by standalone PV plants as well as grid interconnected solar PV plants.Numerous models and techniques have been developed in short,mid and long-term solar forecasting.This paper analyzes some of the potential solar forecasting models based on various methodologies discussed in literature,by mainly focusing on investigating the influence of meteorological variables,time horizon,climatic zone,pre-processing techniques,air pollution,and sample size on the complexity and accuracy of the model.To make the paper reader-friendly,it presents all-important parameters and findings of the models revealed from different studies in a tabular mode having the year of publication,time resolution,input parameters,forecasted parameters,error metrics,and performance.The literature studied showed that ANN-based models outperform the others due to their nonlinear complex problem-solving capabilities.Their accuracy can be further improved by hybridization of the two models or by performing pre-processing on the input data.Besides,it also discusses the diverse key constituents that affect the accuracy of a model.It has been observed that the proper selection of training and testing period along with the correlated dependent variables also enhances the accuracy of the model. 展开更多
关键词 forecasting techniques hybrid models neural network solar forecasting error metric support vector machine(SVM)
原文传递
基于多偏振敏感器的太阳矢量测量方法 被引量:2
10
作者 杨中光 周军 黄河 《光子学报》 EI CAS CSCD 北大核心 2018年第2期113-120,共8页
根据大气偏振模式形成机理,提出了利用多偏振敏感器测量太阳矢量(矢量方向)的方法.介绍了大气偏振模式的形成,设计了由两组偏振单元组成的偏振敏感器,论证了偏振单元之间的最佳设计角度,分析了利用偏振敏感器从大气偏振模式中提取太阳... 根据大气偏振模式形成机理,提出了利用多偏振敏感器测量太阳矢量(矢量方向)的方法.介绍了大气偏振模式的形成,设计了由两组偏振单元组成的偏振敏感器,论证了偏振单元之间的最佳设计角度,分析了利用偏振敏感器从大气偏振模式中提取太阳方位信息的方法,进而提出了利用多偏振敏感器测量并结合最小二乘法解算太阳矢量的方法,针对该算法进行了实验验证,并与双偏振敏感器测量太阳矢量方向的方法进行了对比分析.分析结果表明,利用多偏振敏感器测量不仅可以得到高精度的太阳矢量方向,太阳矢量的方位角误差和高度角误差分别为0.2°和1.0°,还解决了双偏振敏感器测量太阳矢量方向时由于最大偏振方向平行引发的突变问题.实验结果验证了利用多偏振敏感器(≥3)测量太阳矢量的方法是可行的. 展开更多
关键词 偏振敏感器 太阳矢量 偏振模式 偏振光导航 最小二乘法
下载PDF
基于太阳矢量和MEMS的自旋弹姿态估计系统研究 被引量:2
11
作者 徐光延 廖培冲 张红梅 《电光与控制》 北大核心 2017年第8期9-14,55,共7页
针对自旋弹提出了一种新的姿态估计方法。首先,根据自旋弹的性质设计了一种特殊的太阳矢量测量装置,用来测量太阳矢量并替代常用的MEMS中的加速度计和地磁计来修正陀螺仪偏差。该太阳矢量测量装置包括透明外壳、光电池阵列、实时时钟和... 针对自旋弹提出了一种新的姿态估计方法。首先,根据自旋弹的性质设计了一种特殊的太阳矢量测量装置,用来测量太阳矢量并替代常用的MEMS中的加速度计和地磁计来修正陀螺仪偏差。该太阳矢量测量装置包括透明外壳、光电池阵列、实时时钟和处理器,太阳透过透明外壳照射光电池阵列,该阵列将太阳能转换成电动势信号,并结合实时时钟、通过处理器处理得到该时刻的太阳矢量。然后,通过四元数微分方程建立卡尔曼滤波状态方程和观测方程对自旋弹进行姿态估计。最后,仿真结果表明该方法能够得到较高精度的自旋弹姿态角。 展开更多
关键词 自旋弹 姿态估计 卡尔曼滤波 太阳矢量 四元数
下载PDF
太阳能电池板捕光及除尘系统 被引量:2
12
作者 张玮 杨景发 +3 位作者 邹鹏飞 李文静 侯国栋 苏安阁 《实验技术与管理》 CAS 北大核心 2013年第8期30-34,共5页
通过对地球绕太阳运行规律的讨论,实验比较了追踪/不追踪太阳对照度,以及对电池板的开路电压和短路电流的影响,计算描绘出保定地区地球绕日运行轨迹图;在电池板两侧安装反光铝板,实现了对太阳光的聚光收集;设计的"电池板专用调角盘... 通过对地球绕太阳运行规律的讨论,实验比较了追踪/不追踪太阳对照度,以及对电池板的开路电压和短路电流的影响,计算描绘出保定地区地球绕日运行轨迹图;在电池板两侧安装反光铝板,实现了对太阳光的聚光收集;设计的"电池板专用调角盘"实现了电池板安装倾角的手动精确定位;设计的"跟踪装置"实现了电池板平行于地轴的"定点定角单轴追踪";利用fluent软件模拟通风管内风场,比较了气体喷管的开口形状与孔数目对出风的速度矢量图和速度云图影响,基于单片机实现电池板的高压风力除尘。提高了电池板的采光效率和光透过率,进而提高电池板的光电转化效率。 展开更多
关键词 太阳能电池板 单轴追踪 速度矢量图 速度云图 高压风除尘
下载PDF
基于太阳矢量的点光源转台高精度标校建模研究 被引量:1
13
作者 李瑞金 张黎明 +5 位作者 徐伟伟 司孝龙 李佳伟 胡运优 王先华 王戟翔 《光学学报》 EI CAS CSCD 北大核心 2019年第11期326-337,共12页
针对以凸面镜作为反射式点光源的系统建模不够完善,限制其指向精度提高的问题,提出以太阳矢量为参照基准的系统建模方法,提高了系统指向精度。通过实验数据的线性度拟合确定拟合系数R^2在0.999以上,确保了实验数据的可靠性,以最小二乘... 针对以凸面镜作为反射式点光源的系统建模不够完善,限制其指向精度提高的问题,提出以太阳矢量为参照基准的系统建模方法,提高了系统指向精度。通过实验数据的线性度拟合确定拟合系数R^2在0.999以上,确保了实验数据的可靠性,以最小二乘法解算模型求解系统固有安置几何误差,最后,通过反解模型求解目标值方法和太阳图像质心比对法,分别验证标校后模型的正确性。实验结果表明,目标编码器角度与实际测量角度值基本一致,俯仰角度误差标准偏差为0.0043°,方位角度误差标准差为0.00299°,误差范围保持在0.04°以内,图像质心比对法像素差值在2 pixel左右,对应的像素角分辨率误差在0.036°上下,系统综合指向精度优于0.1°,验证了此种方法建模的正确性与可行性,为实现多空间分辨率的高分辨率光学遥感卫星传感器高精度、高频次、业务化、全动态范围的在轨绝对辐射定标奠定了基础。 展开更多
关键词 遥感 在轨绝对辐射定标 几何误差 系统建模 太阳矢量 标校
原文传递
太阳能无人机用多绕组永磁同步电机控制系统研究 被引量:1
14
作者 王春杰 陶志伟 +1 位作者 陈鹏 尹金良 《电子设计工程》 2021年第6期117-122,共6页
针对太阳能无人机多条可变直流母线的新型能源分布式管理系统与电机的匹配问题,采用了以每套绕组作为独立的电机模块的新型多绕组永磁同步电机,通过对其中一个电机模块进行矢量控制得到一组参考电流相位,并采用PR控制策略对参考电流相... 针对太阳能无人机多条可变直流母线的新型能源分布式管理系统与电机的匹配问题,采用了以每套绕组作为独立的电机模块的新型多绕组永磁同步电机,通过对其中一个电机模块进行矢量控制得到一组参考电流相位,并采用PR控制策略对参考电流相位进行跟踪。仿真试验结果表明,新型多绕组永磁同步电机与该策略相结合可使各套绕组电流相位保持同步,验证了其在新型能源分布式管理系统中的有效性与可行性。 展开更多
关键词 太阳能无人机 多绕组永磁同步电机 可变直流母线 矢量控制 PR控制
下载PDF
仿生偏振光导航传感器量测模型研究 被引量:1
15
作者 卢皓 朱元昌 +1 位作者 赵开春 尤政 《军械工程学院学报》 2013年第6期72-75,共4页
仿生偏振导航传感器仿照昆虫利用天空偏振光进行导航的原理,测量载体的姿态和方位,具有精度高、功耗低等优势,是一种新型的导航传感器.根据偏振导航的原理分析偏振导航传感器的测量参考矢量和导航能力,根据其参考矢量的数量及性质,对偏... 仿生偏振导航传感器仿照昆虫利用天空偏振光进行导航的原理,测量载体的姿态和方位,具有精度高、功耗低等优势,是一种新型的导航传感器.根据偏振导航的原理分析偏振导航传感器的测量参考矢量和导航能力,根据其参考矢量的数量及性质,对偏振导航传感器使用在不同性质载体上的测量进行建模,并提出其对载体进行定姿的条件. 展开更多
关键词 偏振导航 建模 太阳矢量 姿态确定
下载PDF
向量代数在固定和跟踪平面太阳能计算中的应用
16
作者 吴茂刚 余亚梅 +2 位作者 许瑞华 吴绍兵 唐润生 《光学学报》 EI CAS CSCD 北大核心 2021年第15期54-66,共13页
太阳能计算是依据太阳几何学并结合地面太阳辐射数据来计算太阳能接收器所收集到的太阳辐射。尽管其计算过程因接收器的结构、光学特性、安装方式的不同而存在很大差异,但最基本的计算是确定太阳光在接收器上的入射角和太阳光在特定截... 太阳能计算是依据太阳几何学并结合地面太阳辐射数据来计算太阳能接收器所收集到的太阳辐射。尽管其计算过程因接收器的结构、光学特性、安装方式的不同而存在很大差异,但最基本的计算是确定太阳光在接收器上的入射角和太阳光在特定截面上的投影入射角。传统方法采用天球坐标作为描述太阳运动规律和相关计算的基础,导致相关计算过程十分复杂。以固定和跟踪太阳板为案例,详细分析了如何用向量方法分析线与线(面)的空间角度关系及光线经过镜面反射后的空间传输规律,阐述了选择和建立坐标系的原则及坐标转换的简便方法。研究结果显示:根据实际需要选择和建立合理的坐标系可以大大简化光线在固定和跟踪平面上的入射角及光线在特定面投影角的计算过程,向量代数非常适用于分析光线在反射式线聚光器内的三维传输过程。 展开更多
关键词 几何光学 太阳几何学 向量代数 坐标转换 太阳跟踪器 投影角
原文传递
基于天气状态模式识别的光伏电站发电功率分类预测方法 被引量:69
17
作者 王飞 米增强 +2 位作者 甄钊 杨光 周海明 《中国电机工程学报》 EI CSCD 北大核心 2013年第34期75-82,14,共8页
光伏发电功率的准确预测对电网调度的计划安排及光伏电站的优化运行具有重要意义。采用单一模型实现多种不同天气状态下光伏发电功率的准确预测非常困难。在分析辐照度变化规律基础上,综合考虑分类总数、类型代表性和分布均衡性,针对气... 光伏发电功率的准确预测对电网调度的计划安排及光伏电站的优化运行具有重要意义。采用单一模型实现多种不同天气状态下光伏发电功率的准确预测非常困难。在分析辐照度变化规律基础上,综合考虑分类总数、类型代表性和分布均衡性,针对气象专业天气类型进行归纳合并,得到4种广义天气类型;进而给出光伏发电功率分类预测的基本框架;提取辐照度的特征参数,建立基于支持向量机的天气状态模式识别模型,辨识恢复部分历史数据所缺失的天气类型信息;最后利用光伏电站的实际运行数据进行仿真,结果验证了模式识别的准确性和分类预测的有效性。 展开更多
关键词 光伏电站 功率预测 模式识别 太阳辐照度 支持向量机 天气状态
下载PDF
基于机器视觉的太阳能电池片缺陷检测技术的研究 被引量:38
18
作者 刘磊 王冲 +1 位作者 赵树旺 李海滨 《电子测量与仪器学报》 CSCD 北大核心 2018年第10期47-52,共6页
为了解决国内生产线中太阳能电池片缺陷识别存在效率低、精度差的问题,提出一种基于机器视觉的缺陷检测方法。首先采用局部最大方差法对电池片图像进行有效分割并识别出断栅,接着提出了一种积分投影与灰度重心相结合的定位算法对图像进... 为了解决国内生产线中太阳能电池片缺陷识别存在效率低、精度差的问题,提出一种基于机器视觉的缺陷检测方法。首先采用局部最大方差法对电池片图像进行有效分割并识别出断栅,接着提出了一种积分投影与灰度重心相结合的定位算法对图像进一步处理,最后通过计算各缺陷的几种特征参数作为输入向量,设计了以径向基(RBF)为核函数的支持向量机(SVM)分类器,通过网格搜索法自动获得分类参数,实现了对太阳能电池片缺角、断栅、崩边、裂纹、漏浆、铸点等几种常见缺陷的检测。实验结果表明,该方法有效提高了检测效率和准确率,所设计的SVM分类器的识别率在90%以上。 展开更多
关键词 机器视觉 太阳能电池片 缺陷检测 支持向量机
下载PDF
Retrieval of global terrestrial solar-induced chlorophyll fluorescence from TanSat satellite 被引量:36
19
作者 Shanshan Du Liangyun Liu +4 位作者 Xinjie Liu Xiao Zhang Xingying Zhang Yanmeng Bi Lianchong Zhang 《Science Bulletin》 SCIE EI CAS CSCD 2018年第22期1502-1512,共11页
The first Chinese Carbon Dioxide Observation Satellite Mission(TanSat), which was launched on December 21, 2016, is intended to measure atmospheric CO_2 concentration.The high spectral resolution(0.044 nm) and high SN... The first Chinese Carbon Dioxide Observation Satellite Mission(TanSat), which was launched on December 21, 2016, is intended to measure atmospheric CO_2 concentration.The high spectral resolution(0.044 nm) and high SNR(360 at 15.2 mW m^(-1) sr^(-1) nm^(-1)) measurements in the region of the O_2-A band of the Atmospheric Carbon dioxide Grating Spectroradiometer(AGCS) module onboard TanSat make it possible to retrieve solar-induced chlorophyll fluorescence(SIF) from TanSat observations at the global scale.This paper aims to explore the potential of the TanSat data for global SIF retrieval.A singular vector decomposition(SVD) statistical method was employed to retrieve SIF using radiance over a micro spectral window(~2 nm) around the Fe Fraunhofer lines(centered at 758.8 nm).The global SIF at 758.8 nm was successfully retrieved with a low residual error of 0.03 mW m^(-1) sr^(-1) nm^(-1).The results show that the spatial and temporal patterns of the retrieved SIF agree well with the global terrestrial vegetation pattern.The monthly SIF products retrieved from the TanSat data were compared with other remote sensing datasets, including OCO-2 SIF, MODIS NDVI, EVI and GPP.The overall consistency between TanSat and OCO-2 SIF products(R^2= 0.86) and the consistency of the spatial patterns and temporal variations between the TanSat SIF and MODIS vegetation indices and GPP enhance our confidence in the potential and feasibility of TanSat data for SIF retrieval.TanSat, therefore, provides a new opportunity for global sampling of SIF at fine spatial resolution(2 km × 2 km), thus improving photosynthesis observations from space. 展开更多
关键词 TanSat solar-induced CHLOROPHYLL fluorescence SINGULAR vector decomposition VEGETATION index MODIS OCO-2 GPP
原文传递
PSO_SVM算法在太阳能电池板裂缝缺陷检测研究 被引量:20
20
作者 陶志勇 于子佳 林森 《电子测量与仪器学报》 CSCD 北大核心 2021年第1期18-25,共8页
针对太阳能电池板在生产过程中出现的裂缝问题,在太阳能电池板缺陷数据集有限的条件下,提出应用粒子群算法(particle swarm optimization,PSO)优化支持向量机(support vector machines,SVM)的太阳能电池板裂缝缺陷检测算法。首先,为减... 针对太阳能电池板在生产过程中出现的裂缝问题,在太阳能电池板缺陷数据集有限的条件下,提出应用粒子群算法(particle swarm optimization,PSO)优化支持向量机(support vector machines,SVM)的太阳能电池板裂缝缺陷检测算法。首先,为减少图像采集过程中由电致发光(electroluminescence,EL)检测产生的光照分布不均影响,对太阳能电池板组件图像进行Retinex增强处理;其次,在频域上利用Gabor变换对图像进行纹理特征提取,以获取裂缝特征;最后,将各个太阳能电池板组件的纹理特征经主成分分析法(principal component analysis,PCA)降维后输入到PSOSVM系统中进行分类识别。应用该方法对600幅太阳能电池板EL图像进行实验,仅有1幅出现误检,分类识别准确率为99.33%。将该算法与决策树分类、极限学习机、卷积神经网络及SVM算法进行对比实验,PSOSVM获得最高识别准确率。 展开更多
关键词 太阳能电池板 裂缝检测 Retinex增强 GABOR滤波器 粒子群算法 支持向量机
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部