提出将纳米颗粒分散于导热油基液形成一种具有强的光吸收性能的纳米流体,能够直接在无吸收涂层的透明真空管内吸收太阳能进行光热转换,用于太阳能中温集热。首先探讨了导热油-Cu O纳米流体稳定性的影响因素,获得了制备过程中最佳的改性...提出将纳米颗粒分散于导热油基液形成一种具有强的光吸收性能的纳米流体,能够直接在无吸收涂层的透明真空管内吸收太阳能进行光热转换,用于太阳能中温集热。首先探讨了导热油-Cu O纳米流体稳定性的影响因素,获得了制备过程中最佳的改性油酸量为2.3 m L/1g Cu O。在室外聚光工况下,实验测试了导热油-Cu O纳米流体在无涂层的透明真空管内直接吸收式中温集热特性,并与镀膜真空管集热性能进行了试验对比。结果显示,在150℃以下集热工况,纳米流体在该透明集热管的集热效率要高于传统吸收镀膜集热管,验证了该新型中温集热方法的可行性。展开更多
Designing highly-efficient parabolic trough receiver(PTR)contributes to promoting solar thermal utilization and alleviating energy crisis and environmental problems.A novel finned PTR with inner tube(FPTR-IT),which ca...Designing highly-efficient parabolic trough receiver(PTR)contributes to promoting solar thermal utilization and alleviating energy crisis and environmental problems.A novel finned PTR with inner tube(FPTR-IT),which can provide different grades of thermal energy with two heat transfer fluids(oil and water),is designed to improve thermal efficiency.In this FPTR-IT,an inner tube and straight fins are employed to respectively lessen heat loss at upper and lower parts of the absorber.Based on the design,a numerical model is developed to investigate its performance.Comparisons with other PTRs indicate that the FPTR-IT can combine the advantages of PTR with inner tube and finned PTR and obtain the best performance.Moreover,performance evaluation under broad ranges of direct normal irradiances(300–1000 W/m^(2)),flow rates(50–250 L/min)and inlet temperatures(400–600 K)of oil as well as flow rates(3.6–10 L/min)and inlet temperatures(298.15–318.15 K)of water is investigated.Compared with conventional PTR,heat loss is reduced by 20.7%–63.2%and total efficiency is improved by 0.03%–4.27%.Furthermore,the proportions of heat gains for water and oil are located in 8.3%–73.9%and-12.0%–64.3%,while their temperature gains are located in 11.6–37.9 K and-1.2–19.6 K,respectively.Thus,the proposed FPTR-IT may have a promising application prospect in remote arid areas or islands to provide different grades of heat for electricity and freshwater production.展开更多
In the present work, an investigation on the application of solar energy to heat a sandy bed impregnated with calcium chloride for recovery of water from atmospheric air is presented. The study also aimed at evaluatin...In the present work, an investigation on the application of solar energy to heat a sandy bed impregnated with calcium chloride for recovery of water from atmospheric air is presented. The study also aimed at evaluating the effects of different parameters on the productivity of the system during regeneration. These parameters include system design characteristics and the climatic conditions. An experimental unit has been designed and installed for this purpose in climatic conditions of Taif area, Saudi Arabia. The experimental unit which has a surface area of 0.5 m2, comprises a solar/desiccant collector unit containing sandy bed impregnated with calcium chloride. The sandy layer impregnated with desiccant is subjected to ambient atmosphere to absorb water vapor in the night. During the sunshine period, the layer is covered with glass layer where desiccant is regenerated and water vapor is condensed on the glass surface. Ambient temperature, bed temperature and temperature of glass surface are recorded. Also, the productivity of the system has been evaluated. Desiccant concentration at start of regeneration is selected on the basis of the climatic data of Al-Hada region, which is located at Taif area, Saudi Arabia. Experimental measurements show that about 1.0 liter per m2 of pure water can be regenerated from the desiccant bed at the climatic conditions of Taif. Liquid desiccant with initial concentration of 30% can be regenerated to a final concentration of about 44%. Desiccant concentration at start of regeneration is selected on the basis of the climatic data of Al-Hada region. The climate of Taif city is dry compared with that for Al-Hada region. This method for extracting water from atmospheric air is more suitable for Al-Hada region especially in the fall and winter.展开更多
文摘提出将纳米颗粒分散于导热油基液形成一种具有强的光吸收性能的纳米流体,能够直接在无吸收涂层的透明真空管内吸收太阳能进行光热转换,用于太阳能中温集热。首先探讨了导热油-Cu O纳米流体稳定性的影响因素,获得了制备过程中最佳的改性油酸量为2.3 m L/1g Cu O。在室外聚光工况下,实验测试了导热油-Cu O纳米流体在无涂层的透明真空管内直接吸收式中温集热特性,并与镀膜真空管集热性能进行了试验对比。结果显示,在150℃以下集热工况,纳米流体在该透明集热管的集热效率要高于传统吸收镀膜集热管,验证了该新型中温集热方法的可行性。
基金supported by the China Postdoctoral Science Foundation(Grant No.2020M672344)。
文摘Designing highly-efficient parabolic trough receiver(PTR)contributes to promoting solar thermal utilization and alleviating energy crisis and environmental problems.A novel finned PTR with inner tube(FPTR-IT),which can provide different grades of thermal energy with two heat transfer fluids(oil and water),is designed to improve thermal efficiency.In this FPTR-IT,an inner tube and straight fins are employed to respectively lessen heat loss at upper and lower parts of the absorber.Based on the design,a numerical model is developed to investigate its performance.Comparisons with other PTRs indicate that the FPTR-IT can combine the advantages of PTR with inner tube and finned PTR and obtain the best performance.Moreover,performance evaluation under broad ranges of direct normal irradiances(300–1000 W/m^(2)),flow rates(50–250 L/min)and inlet temperatures(400–600 K)of oil as well as flow rates(3.6–10 L/min)and inlet temperatures(298.15–318.15 K)of water is investigated.Compared with conventional PTR,heat loss is reduced by 20.7%–63.2%and total efficiency is improved by 0.03%–4.27%.Furthermore,the proportions of heat gains for water and oil are located in 8.3%–73.9%and-12.0%–64.3%,while their temperature gains are located in 11.6–37.9 K and-1.2–19.6 K,respectively.Thus,the proposed FPTR-IT may have a promising application prospect in remote arid areas or islands to provide different grades of heat for electricity and freshwater production.
文摘In the present work, an investigation on the application of solar energy to heat a sandy bed impregnated with calcium chloride for recovery of water from atmospheric air is presented. The study also aimed at evaluating the effects of different parameters on the productivity of the system during regeneration. These parameters include system design characteristics and the climatic conditions. An experimental unit has been designed and installed for this purpose in climatic conditions of Taif area, Saudi Arabia. The experimental unit which has a surface area of 0.5 m2, comprises a solar/desiccant collector unit containing sandy bed impregnated with calcium chloride. The sandy layer impregnated with desiccant is subjected to ambient atmosphere to absorb water vapor in the night. During the sunshine period, the layer is covered with glass layer where desiccant is regenerated and water vapor is condensed on the glass surface. Ambient temperature, bed temperature and temperature of glass surface are recorded. Also, the productivity of the system has been evaluated. Desiccant concentration at start of regeneration is selected on the basis of the climatic data of Al-Hada region, which is located at Taif area, Saudi Arabia. Experimental measurements show that about 1.0 liter per m2 of pure water can be regenerated from the desiccant bed at the climatic conditions of Taif. Liquid desiccant with initial concentration of 30% can be regenerated to a final concentration of about 44%. Desiccant concentration at start of regeneration is selected on the basis of the climatic data of Al-Hada region. The climate of Taif city is dry compared with that for Al-Hada region. This method for extracting water from atmospheric air is more suitable for Al-Hada region especially in the fall and winter.