土壤冻融过程显著影响地表含水量和能量收支变化。利用玛曲2017年8月至2018年7月的土壤温度/湿度、涡动观测资料以及公用陆面模式(Community Land Model,CLM)最新版本CLM5.0的模拟资料,其中冻结过程阶段的辐射和能量通量使用模式模拟的...土壤冻融过程显著影响地表含水量和能量收支变化。利用玛曲2017年8月至2018年7月的土壤温度/湿度、涡动观测资料以及公用陆面模式(Community Land Model,CLM)最新版本CLM5.0的模拟资料,其中冻结过程阶段的辐射和能量通量使用模式模拟的数据,通过分析土壤冻融过程中土壤温湿度、地表能量平衡各分量的时间演变特征,探讨冻融过程中地表水热交换的特征。数据分析表明:(1)土壤冻融过程包括冻结过程、完全冻结、消融过程及完全消融四个阶段,各阶段中的土壤温度/湿度、辐射和能量通量存在明显的日变化,在冻结过程和消融过程阶段,土壤湿度随土壤温度变化显示出明显的日冻融循环。(2)冻融过程通过影响表层土壤水分影响地表辐射收支和能量分配。冻融过程中土壤中的水相变为冰,改变下垫面性质影响地表辐射收支。土壤中的液态水通过相变影响地表潜热通量,完全消融(冻结)阶段,地气之间能量交换以潜热(感热)通量为主。相比于以潜热通量为主的冻结过程阶段,消融过程阶段净辐射通量逐渐增大,地气之间能量交换主要受感热通量影响。土壤中水分的昼融夜冻导致频繁的潜热通量释放影响地表热通量。土壤热通量在冻结过程(G_(0)=-9.1 W·m^(-2))和消融过程阶段(G_(0)=3.4 W·m^(-2))绝对值大于完全消融阶段(G_(0)=1.2 W·m^(-2)),土壤日冻融循环加强地表热通量交换。(3)能量闭合率为感热、潜热通量之和与净辐射通量、土壤热通量之差的比值。冻结过程、完全冻结、消融过程和完全消融阶段平均能量闭合率为1.44、1.56、0.99和0.81,消融过程和完全消融过程能量闭合率更趋近于1。土壤中存在日冻融循环时,冻结过程阶段土壤中的水冻结释放热量,高估土壤热通量从而高估能量闭合率,消融过程阶段土壤中的冰融化吸收热量,低估土壤热通量从而低估能量闭合率,影响地�展开更多
土壤冻融过程是青藏高原陆面过程中最突出的特征之一,量化表征土壤冻融过程的关键参量变化特征对认识青藏高原气候变化、生态和水文过程有重要的科学意义。本文利用青藏高原地区ECMWF/ERA5(European Centre for Medium-Range Weather Fo...土壤冻融过程是青藏高原陆面过程中最突出的特征之一,量化表征土壤冻融过程的关键参量变化特征对认识青藏高原气候变化、生态和水文过程有重要的科学意义。本文利用青藏高原地区ECMWF/ERA5(European Centre for Medium-Range Weather Forecasts/ERA5)的浅层土壤温度、体积含水量和气温资料,通过线性回归、Mann-Kendall检验法、滑动t检验和相关分析等方法,分析了表征青藏高原土壤冻融过程的三个关键参量-冻结开始时间、融化开始时间和冻结持续时间的时空分布特征,并探讨了其与气温、海拔的相关性。结果表明:青藏高原土壤冻融过程的空间分布特征为由西北到东南存在冻结推迟、融化提前和冻结持续时间缩短的趋势。1979-2018年间,青藏高原整体土壤冻融过程改变显著,冻结开始时间推迟14.0天,变率为0.17 d·a^(-1);融化开始时间提前11.0天,变率为0.07 d·a^(-1);冻结持续时间缩短25.0天,变率为0.23 d·a^(-1)。青藏高原土壤冻融过程整体变化趋势一致,局地变率存在差异。羌塘地区土壤冻结持续时间缩短最为明显,南北部分别缩短47.2天和32.9天。三个冻融过程关键参量与气温、海拔相关性显著。气温每上升1.0℃,冻结开始时间推后5.2天,融化开始时间提早4.5天。在青藏高原高寒气候带,海拔每升高1000.0 m,冻结开始时间提早9.1天,融化开始时间推后4.9天。展开更多
文摘土壤冻融过程是青藏高原陆面过程中最突出的特征之一,量化表征土壤冻融过程的关键参量变化特征对认识青藏高原气候变化、生态和水文过程有重要的科学意义。本文利用青藏高原地区ECMWF/ERA5(European Centre for Medium-Range Weather Forecasts/ERA5)的浅层土壤温度、体积含水量和气温资料,通过线性回归、Mann-Kendall检验法、滑动t检验和相关分析等方法,分析了表征青藏高原土壤冻融过程的三个关键参量-冻结开始时间、融化开始时间和冻结持续时间的时空分布特征,并探讨了其与气温、海拔的相关性。结果表明:青藏高原土壤冻融过程的空间分布特征为由西北到东南存在冻结推迟、融化提前和冻结持续时间缩短的趋势。1979-2018年间,青藏高原整体土壤冻融过程改变显著,冻结开始时间推迟14.0天,变率为0.17 d·a^(-1);融化开始时间提前11.0天,变率为0.07 d·a^(-1);冻结持续时间缩短25.0天,变率为0.23 d·a^(-1)。青藏高原土壤冻融过程整体变化趋势一致,局地变率存在差异。羌塘地区土壤冻结持续时间缩短最为明显,南北部分别缩短47.2天和32.9天。三个冻融过程关键参量与气温、海拔相关性显著。气温每上升1.0℃,冻结开始时间推后5.2天,融化开始时间提早4.5天。在青藏高原高寒气候带,海拔每升高1000.0 m,冻结开始时间提早9.1天,融化开始时间推后4.9天。