Software-Defined Networking (SDN) has been a hot topic for future network development, which implements the different layers of control plane and data plane respectively. Despite providing high openness and programmab...Software-Defined Networking (SDN) has been a hot topic for future network development, which implements the different layers of control plane and data plane respectively. Despite providing high openness and programmability, the “three-layer two-interface” architecture of SDN changes the traditional network and increases the network attack nodes, which results in new security issues. In this paper, we firstly introduced the background, architecture and working process of SDN. Secondly, we summarized and analyzed the typical security issues from north to south: application layer, northbound interface, control layer, southbound interface and data layer. Another contribution is to review and analyze the existing solutions and latest research progress of each layer, mainly including: authorized authentication module, application isolation, DoS/DDoS defense, multi-controller deployment and flow rule consistency detection. Finally, a conclusion about the future works of SDN security and an idealized global security architecture is proposed.展开更多
针对现有技术对某些特定分布式拒绝服务(Distributed Denial of Service,DDoS)攻击检测精度不够的问题,提出了一种防御软件定义网络(Software Defined Network,SDN)中路由欺骗(Route Spoofing,RS)攻击的轻量级解决方案.该方案通过分析...针对现有技术对某些特定分布式拒绝服务(Distributed Denial of Service,DDoS)攻击检测精度不够的问题,提出了一种防御软件定义网络(Software Defined Network,SDN)中路由欺骗(Route Spoofing,RS)攻击的轻量级解决方案.该方案通过分析路由欺骗产生的原因,在数据平面OpenFlow交换机上设计了选择性阻塞扩展模块,一旦检测器发现RS攻击,交换机将生成的报警包发送给控制器,控制器通过发送转发规则阻止攻击者节点恶意使用其他用户的活动通信路由.仿真结果表明,本文方法可以有效地检测出SDN中的DDoS攻击,相关指标也充分显示了解决方案的可行性和正确性.展开更多
With the widespread application of cloud computing and network virtualization technologies,more and more enterprise applications are directly deployed in the cloud.However,the traditional TCP/IP network transmission m...With the widespread application of cloud computing and network virtualization technologies,more and more enterprise applications are directly deployed in the cloud.However,the traditional TCP/IP network transmission model does not fully consider the information security issues caused by the uncontrollable internet environment.Network security communication solutions represented by encrypted virtual private networks(VPN)are facing multiple security threats.In fact,during the communication process,the user application needs to protect not only the content of the communication but also the behavior of the communication,such as the communication relationship,the communication protocol,and so on.Inspired by blockchain and software-defined networking technology,this paper proposes a resilient anonymous information sharing environment,RAISE.The RAISE system consists of user agents,a core switching network and a control cluster based on a consortium blockchain.User agents are responsible for segmenting,encrypting,and encapsulating user traffic.The core switching network forwards user traffic according to the rules issued by the controller,and the controller dynamically calculates the forwarding rules according to the security policy.Different from onion routing technology,RAISE adopts the controller to replace the onion routing model,which effectively overcomes the uncontrollability of nodes.The dispersed computing model is introduced to replace the TCP/IP pipeline transmission models,which overcomes the problems of anti-tracking and traffic hijacking that cannot be solved by VPNs.We propose a blockchain control plane framework,design the desired consensus algorithmand deploy a RAISE systemconsisting of 150 nodes in an internet environment.The experimental results show that the use of blockchain technology can effectively improve the reliability and security of the control plane.While maintaining high-performance network transmission,it further provides network communication security.展开更多
Currently, different kinds of security devices are deployed in the cloud datacenter environment and tenants may choose their desired security services such as firewall and IDS (intrusion detection system). At the sa...Currently, different kinds of security devices are deployed in the cloud datacenter environment and tenants may choose their desired security services such as firewall and IDS (intrusion detection system). At the same time, tenants in cloud computing datacenters are dynamic and have different requirements. Therefore, security device deployment in cloud datacenters is very complex and may lead to inefficient resource utilization. In this paper, we study this problem in a software-defined network (SDN) based multi-tenant cloud datacenter environment. We propose a load-adaptive traffic steering and packet forwarding scheme called LTSS to solve the problem. Our scheme combines SDN controller with TagOper plug-in to determine the traffic paths with the minimum load for tenants and allows tenants to get their desired security services in SDN-based datacenter networks. We also build a prototype system for LTSS to verify its functionality and evaluate performance of our design.展开更多
软件定义网络(software defined networking,SDN)将控制层和数据转发层分离,由控制层对数据转发层进行统一管理。目前控制层及数据转发层设备间完整性认证机制尚不完善,若平台完整性损坏的设备接入网络,会给整个SDN网络带来严重的安全...软件定义网络(software defined networking,SDN)将控制层和数据转发层分离,由控制层对数据转发层进行统一管理。目前控制层及数据转发层设备间完整性认证机制尚不完善,若平台完整性损坏的设备接入网络,会给整个SDN网络带来严重的安全问题。为确保双方设备在完整可信的前提下建立连接,进而在源头上保障设备安全、网络可信,提出了一种新的SDN可信连接方案。该方案以可信网络远程设备认证技术为基础,利用可信平台模块作为可信支撑,在SDN数据转发设备与控制器的连接过程中添加完整性认证环节。测试分析表明,该方案有效可行,符合实际应用。展开更多
Controller vulnerabilities allow malicious actors to disrupt or hijack the Software-Defined Networking. Traditionally, it is static mappings between the control plane and data plane. Adversaries have plenty of time to...Controller vulnerabilities allow malicious actors to disrupt or hijack the Software-Defined Networking. Traditionally, it is static mappings between the control plane and data plane. Adversaries have plenty of time to exploit the controller's vulnerabilities and launch attacks wisely. We tend to believe that dynamically altering such static mappings is a promising approach to alleviate this issue, since a moving target is difficult to be compromised even by skilled adversaries. It is critical to determine the right time to conduct scheduling and to balance the overhead afforded and the security levels guaranteed. Little previous work has been done to investigate the economical time in dynamic-scheduling controllers. In this paper, we take the first step to both theoretically and experimentally study the scheduling-timing problem in dynamic control plane. We model this problem as a renewal reward process and propose an optimal algorithm in deciding the right time to schedule with the objective of minimizing the long-term loss rate. In our experiments, simulations based on real network attack datasets are conducted and we demonstrate that our proposed algorithm outperforms given scheduling schemes.展开更多
基金supported by the Wuhan Frontier Program of Application Foundation (No.2018010401011295)National High Technology Research and Development Program of China (“863” Program) (Grant No. 2015AA016002)
文摘Software-Defined Networking (SDN) has been a hot topic for future network development, which implements the different layers of control plane and data plane respectively. Despite providing high openness and programmability, the “three-layer two-interface” architecture of SDN changes the traditional network and increases the network attack nodes, which results in new security issues. In this paper, we firstly introduced the background, architecture and working process of SDN. Secondly, we summarized and analyzed the typical security issues from north to south: application layer, northbound interface, control layer, southbound interface and data layer. Another contribution is to review and analyze the existing solutions and latest research progress of each layer, mainly including: authorized authentication module, application isolation, DoS/DDoS defense, multi-controller deployment and flow rule consistency detection. Finally, a conclusion about the future works of SDN security and an idealized global security architecture is proposed.
文摘针对现有技术对某些特定分布式拒绝服务(Distributed Denial of Service,DDoS)攻击检测精度不够的问题,提出了一种防御软件定义网络(Software Defined Network,SDN)中路由欺骗(Route Spoofing,RS)攻击的轻量级解决方案.该方案通过分析路由欺骗产生的原因,在数据平面OpenFlow交换机上设计了选择性阻塞扩展模块,一旦检测器发现RS攻击,交换机将生成的报警包发送给控制器,控制器通过发送转发规则阻止攻击者节点恶意使用其他用户的活动通信路由.仿真结果表明,本文方法可以有效地检测出SDN中的DDoS攻击,相关指标也充分显示了解决方案的可行性和正确性.
基金This work was supported by the National Natural Science Foundation of China(Grant No.61976064).
文摘With the widespread application of cloud computing and network virtualization technologies,more and more enterprise applications are directly deployed in the cloud.However,the traditional TCP/IP network transmission model does not fully consider the information security issues caused by the uncontrollable internet environment.Network security communication solutions represented by encrypted virtual private networks(VPN)are facing multiple security threats.In fact,during the communication process,the user application needs to protect not only the content of the communication but also the behavior of the communication,such as the communication relationship,the communication protocol,and so on.Inspired by blockchain and software-defined networking technology,this paper proposes a resilient anonymous information sharing environment,RAISE.The RAISE system consists of user agents,a core switching network and a control cluster based on a consortium blockchain.User agents are responsible for segmenting,encrypting,and encapsulating user traffic.The core switching network forwards user traffic according to the rules issued by the controller,and the controller dynamically calculates the forwarding rules according to the security policy.Different from onion routing technology,RAISE adopts the controller to replace the onion routing model,which effectively overcomes the uncontrollability of nodes.The dispersed computing model is introduced to replace the TCP/IP pipeline transmission models,which overcomes the problems of anti-tracking and traffic hijacking that cannot be solved by VPNs.We propose a blockchain control plane framework,design the desired consensus algorithmand deploy a RAISE systemconsisting of 150 nodes in an internet environment.The experimental results show that the use of blockchain technology can effectively improve the reliability and security of the control plane.While maintaining high-performance network transmission,it further provides network communication security.
基金The work is supported by the National Natural Science Foundation of China under Grant Nos. 61572137 and 61728202, and Shanghai Innovation Action Project under Grant No. 16DZ1100200.
文摘Currently, different kinds of security devices are deployed in the cloud datacenter environment and tenants may choose their desired security services such as firewall and IDS (intrusion detection system). At the same time, tenants in cloud computing datacenters are dynamic and have different requirements. Therefore, security device deployment in cloud datacenters is very complex and may lead to inefficient resource utilization. In this paper, we study this problem in a software-defined network (SDN) based multi-tenant cloud datacenter environment. We propose a load-adaptive traffic steering and packet forwarding scheme called LTSS to solve the problem. Our scheme combines SDN controller with TagOper plug-in to determine the traffic paths with the minimum load for tenants and allows tenants to get their desired security services in SDN-based datacenter networks. We also build a prototype system for LTSS to verify its functionality and evaluate performance of our design.
文摘软件定义网络(software defined networking,SDN)将控制层和数据转发层分离,由控制层对数据转发层进行统一管理。目前控制层及数据转发层设备间完整性认证机制尚不完善,若平台完整性损坏的设备接入网络,会给整个SDN网络带来严重的安全问题。为确保双方设备在完整可信的前提下建立连接,进而在源头上保障设备安全、网络可信,提出了一种新的SDN可信连接方案。该方案以可信网络远程设备认证技术为基础,利用可信平台模块作为可信支撑,在SDN数据转发设备与控制器的连接过程中添加完整性认证环节。测试分析表明,该方案有效可行,符合实际应用。
基金supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No. 61521003)The National Key R&D Program of China (No.2016YFB0800101)+1 种基金the National Science Foundation for Distinguished Young Scholars of China (No.61602509)Henan Province Key Technologies R&D Program of China(No.172102210615)
文摘Controller vulnerabilities allow malicious actors to disrupt or hijack the Software-Defined Networking. Traditionally, it is static mappings between the control plane and data plane. Adversaries have plenty of time to exploit the controller's vulnerabilities and launch attacks wisely. We tend to believe that dynamically altering such static mappings is a promising approach to alleviate this issue, since a moving target is difficult to be compromised even by skilled adversaries. It is critical to determine the right time to conduct scheduling and to balance the overhead afforded and the security levels guaranteed. Little previous work has been done to investigate the economical time in dynamic-scheduling controllers. In this paper, we take the first step to both theoretically and experimentally study the scheduling-timing problem in dynamic control plane. We model this problem as a renewal reward process and propose an optimal algorithm in deciding the right time to schedule with the objective of minimizing the long-term loss rate. In our experiments, simulations based on real network attack datasets are conducted and we demonstrate that our proposed algorithm outperforms given scheduling schemes.