中文句法结构复杂,特征维数较高,目前已知最好的汉语句法分析效果与其他西方语言相比还有一定的差距。为进一步提高中文句法分析的效率和精度,该文提出一种采用二阶范数软间隔优化的结构化支持向量机(Structural Support Vector Machine...中文句法结构复杂,特征维数较高,目前已知最好的汉语句法分析效果与其他西方语言相比还有一定的差距。为进一步提高中文句法分析的效率和精度,该文提出一种采用二阶范数软间隔优化的结构化支持向量机(Structural Support Vector Machines,Structural SVMs)方法对基于短语结构的中文句法进行分析,通过构造结构化特征函数ψ(x,y),体现句法树的输入信息,并根据中文句子本身具有的强相关性,在所构造的ψ(x,y)中增加中文句法分析树中父节点的信息,使ψ(x,y)包含了更加丰富的结构信息。在宾州中文树库PCTB上的实验结果表明,该文方法与经典结构化支持向量机方法以及Berkeley Parser相比可取得较好的效果。展开更多
虽然软大间隔聚类(Soft large margin clustering,SLMC)相比其他诸如K-Means等算法具有更优的聚类性能与某种程度的可解释性,然而当面对大规模分布存储数据时,均遭遇了同样的可扩展瓶颈,其涉及的核矩阵计算需要高昂的时间代价。消减此...虽然软大间隔聚类(Soft large margin clustering,SLMC)相比其他诸如K-Means等算法具有更优的聚类性能与某种程度的可解释性,然而当面对大规模分布存储数据时,均遭遇了同样的可扩展瓶颈,其涉及的核矩阵计算需要高昂的时间代价。消减此代价的有效策略之一是采用随机Fourier特征变换逼近核函数,而逼近精度所依赖的特征维度常常过高,隐含着可能过拟合的风险。本文将稀疏性嵌入核SLMC,结合交替方向乘子法(Alternating direction method of multipliers,ADMM),给出了一个分布式稀疏软大间隔聚类算法(Distributed sparse SLMC,DS-SLMC)来克服可扩展问题,同时通过稀疏化获得更好的可解释性。展开更多
文摘虽然软大间隔聚类(Soft large margin clustering,SLMC)相比其他诸如K-Means等算法具有更优的聚类性能与某种程度的可解释性,然而当面对大规模分布存储数据时,均遭遇了同样的可扩展瓶颈,其涉及的核矩阵计算需要高昂的时间代价。消减此代价的有效策略之一是采用随机Fourier特征变换逼近核函数,而逼近精度所依赖的特征维度常常过高,隐含着可能过拟合的风险。本文将稀疏性嵌入核SLMC,结合交替方向乘子法(Alternating direction method of multipliers,ADMM),给出了一个分布式稀疏软大间隔聚类算法(Distributed sparse SLMC,DS-SLMC)来克服可扩展问题,同时通过稀疏化获得更好的可解释性。