机器人学是现在及未来科技发展的重点,路径规划是机器人学中的一个重要课题.生物界一些群居动物有严格的等级制度和职责分工,受社会群居动物行为启发,提出社会群体搜索算法(social group search algorithm,SGSO).社会群体搜索算法对群...机器人学是现在及未来科技发展的重点,路径规划是机器人学中的一个重要课题.生物界一些群居动物有严格的等级制度和职责分工,受社会群居动物行为启发,提出社会群体搜索算法(social group search algorithm,SGSO).社会群体搜索算法对群体的分类及信息反馈机制——领导-追随机制的制定,降低了早熟的概率,交叉变异和淘汰机制的引入增加了搜索范围,减少了陷入局部最优的可能.同时,对提出的社会群体搜索算法进行了分析,从理论上证明了算法的收敛性;将社会群体搜索算法应用于机器人路径规划进行仿真,从实验中验证了算法的有效性,并与遗传算法和粒子群算法比较,进一步证明了社会群体搜索算法在机器人路径规划问题中的有效性和高效性.展开更多
在线社交网络中虚假信息传播蔓延成为当前网络空间安全治理面临的重要挑战。提出一种融合用户传播风险和节点影响力分析的虚假信息传播控制方法DDC-UPRNI(disinformation diffusion control method integrating user propagation risk a...在线社交网络中虚假信息传播蔓延成为当前网络空间安全治理面临的重要挑战。提出一种融合用户传播风险和节点影响力分析的虚假信息传播控制方法DDC-UPRNI(disinformation diffusion control method integrating user propagation risk and node influence analysis)。综合考虑虚假信息传播特征空间的多样性和复杂性,通过自注意力机制实现用户传播虚假信息行为维度、时间维度和内容维度特征的嵌入表示,运用改进的无监督聚类K-means++算法实现不同用户传播风险等级的自动划分;设计一种自适应加权策略实现对离散粒子群优化算法的改进,进而提出一种基于离散粒子群优化的虚假信息传播关键节点选取方法,用于从具有特定传播风险等级的用户节点集合中选取若干个具有影响力的控制驱动节点,从而实现精准、高效的虚假信息传播控制;基于现实在线社交网络平台上开展试验,结果表明,所提出的DDC-UPRNI方法与现有算法相比,在控制效果和时间复杂度等重要指标上具有明显优势。该方法为社会网络空间中的虚假信息管控治理提供重要参考。展开更多
The influence maximization problem aims to select a small set of influential nodes, termed a seed set, to maximize their influence coverage in social networks. Although the methods that are based on a greedy strategy ...The influence maximization problem aims to select a small set of influential nodes, termed a seed set, to maximize their influence coverage in social networks. Although the methods that are based on a greedy strategy can obtain good accuracy, they come at the cost of enormous computational time, and are therefore not applicable to practical scenarios in large-scale networks. In addition, the centrality heuristic algorithms that are based on network topology can be completed in relatively less time. However, they tend to fail to achieve satisfactory results because of drawbacks such as overlapped influence spread. In this work, we propose a discrete two-stage metaheuristic optimization combining quantum-behaved particle swarm optimization with Lévy flight to identify a set of the most influential spreaders. According to the framework,first, the particles in the population are tasked to conduct an exploration in the global solution space to eventually converge to an acceptable solution through the crossover and replacement operations. Second, the Lévy flight mechanism is used to perform a wandering walk on the optimal candidate solution in the population to exploit the potentially unidentified influential nodes in the network. Experiments on six real-world social networks show that the proposed algorithm achieves more satisfactory results when compared to other well-known algorithms.展开更多
灰狼优化(Grey wolf optimizer,GWO)算法是一种近年提出的新的群智能优化算法,为了解决其寻优精度低以及收敛速度慢的缺点,该文提出一种灰狼-粒子群智能优化(Grey wolf optimizer_particle swarm optimization,GWO_PSO)算法。采用混沌...灰狼优化(Grey wolf optimizer,GWO)算法是一种近年提出的新的群智能优化算法,为了解决其寻优精度低以及收敛速度慢的缺点,该文提出一种灰狼-粒子群智能优化(Grey wolf optimizer_particle swarm optimization,GWO_PSO)算法。采用混沌算法中的Logistic混沌映射初始化种群,使狼群种群开始分布更加趋于随机;提出一种繁衍淘汰机制,等级不同的灰狼对于下一代灰狼产生不同的权重,并且对狼群中最差的一批灰狼予以淘汰,根据繁衍机制生成新的种群;采用粒子群优化算法的速度矢量,为狼群狩猎提供方向。根据仿真实验,GWO_PSO算法的收敛速度和精度相较与粒子群优化(Particle swarm optimization,PSO)和GWO都有了极大的提高,相较于其他的改进灰狼算法,GWO_PSO表现出不错的寻优能力。展开更多
车辆路径问题旨在求解每辆车的服务路线,使其在完成配送任务的情况下行驶距离之和最短,是运筹学中经典的组合优化问题,属于NP难问题,且具有较高的理论意义与实际应用价值。针对该问题,提出了一种基于分层学习和差分进化的混合粒子群优...车辆路径问题旨在求解每辆车的服务路线,使其在完成配送任务的情况下行驶距离之和最短,是运筹学中经典的组合优化问题,属于NP难问题,且具有较高的理论意义与实际应用价值。针对该问题,提出了一种基于分层学习和差分进化的混合粒子群优化算法(Hybrid Particle Swarm Optimization Algorithm Based on Hierarchical Learning and Different Evolution,DEHSLPSO)。DE-HSLPSO中引入了分层学习策略,以适应度值和迭代次数为依据将种群粒子动态划分为3层,在前两层粒子的进化过程中引入了社会学习机制,而第三层粒子进行差分进化,通过变异和交叉有效地增加粒子的多样性,从而开拓空间,有利于跳出局部最优。通过在经典的CVRP数据集上进行仿真实验,来探究DE-HSLPSO各部分对整体性能的影响,实验证明分层策略与差分进化均可提升算法的整体性能。另外,在7个基本算例上对DE-HSLPSO与其他优化算法进行了测试,综合时间与最优解进行对比,结果表明DE-HSLPSO的求解性能优于其他对比算法。展开更多
文摘机器人学是现在及未来科技发展的重点,路径规划是机器人学中的一个重要课题.生物界一些群居动物有严格的等级制度和职责分工,受社会群居动物行为启发,提出社会群体搜索算法(social group search algorithm,SGSO).社会群体搜索算法对群体的分类及信息反馈机制——领导-追随机制的制定,降低了早熟的概率,交叉变异和淘汰机制的引入增加了搜索范围,减少了陷入局部最优的可能.同时,对提出的社会群体搜索算法进行了分析,从理论上证明了算法的收敛性;将社会群体搜索算法应用于机器人路径规划进行仿真,从实验中验证了算法的有效性,并与遗传算法和粒子群算法比较,进一步证明了社会群体搜索算法在机器人路径规划问题中的有效性和高效性.
文摘在线社交网络中虚假信息传播蔓延成为当前网络空间安全治理面临的重要挑战。提出一种融合用户传播风险和节点影响力分析的虚假信息传播控制方法DDC-UPRNI(disinformation diffusion control method integrating user propagation risk and node influence analysis)。综合考虑虚假信息传播特征空间的多样性和复杂性,通过自注意力机制实现用户传播虚假信息行为维度、时间维度和内容维度特征的嵌入表示,运用改进的无监督聚类K-means++算法实现不同用户传播风险等级的自动划分;设计一种自适应加权策略实现对离散粒子群优化算法的改进,进而提出一种基于离散粒子群优化的虚假信息传播关键节点选取方法,用于从具有特定传播风险等级的用户节点集合中选取若干个具有影响力的控制驱动节点,从而实现精准、高效的虚假信息传播控制;基于现实在线社交网络平台上开展试验,结果表明,所提出的DDC-UPRNI方法与现有算法相比,在控制效果和时间复杂度等重要指标上具有明显优势。该方法为社会网络空间中的虚假信息管控治理提供重要参考。
基金Project supported by the Zhejiang Provincial Natural Science Foundation (Grant No.LQ20F020011)the Gansu Provincial Foundation for Distinguished Young Scholars (Grant No.23JRRA766)+1 种基金the National Natural Science Foundation of China (Grant No.62162040)the National Key Research and Development Program of China (Grant No.2020YFB1713600)。
文摘The influence maximization problem aims to select a small set of influential nodes, termed a seed set, to maximize their influence coverage in social networks. Although the methods that are based on a greedy strategy can obtain good accuracy, they come at the cost of enormous computational time, and are therefore not applicable to practical scenarios in large-scale networks. In addition, the centrality heuristic algorithms that are based on network topology can be completed in relatively less time. However, they tend to fail to achieve satisfactory results because of drawbacks such as overlapped influence spread. In this work, we propose a discrete two-stage metaheuristic optimization combining quantum-behaved particle swarm optimization with Lévy flight to identify a set of the most influential spreaders. According to the framework,first, the particles in the population are tasked to conduct an exploration in the global solution space to eventually converge to an acceptable solution through the crossover and replacement operations. Second, the Lévy flight mechanism is used to perform a wandering walk on the optimal candidate solution in the population to exploit the potentially unidentified influential nodes in the network. Experiments on six real-world social networks show that the proposed algorithm achieves more satisfactory results when compared to other well-known algorithms.
文摘灰狼优化(Grey wolf optimizer,GWO)算法是一种近年提出的新的群智能优化算法,为了解决其寻优精度低以及收敛速度慢的缺点,该文提出一种灰狼-粒子群智能优化(Grey wolf optimizer_particle swarm optimization,GWO_PSO)算法。采用混沌算法中的Logistic混沌映射初始化种群,使狼群种群开始分布更加趋于随机;提出一种繁衍淘汰机制,等级不同的灰狼对于下一代灰狼产生不同的权重,并且对狼群中最差的一批灰狼予以淘汰,根据繁衍机制生成新的种群;采用粒子群优化算法的速度矢量,为狼群狩猎提供方向。根据仿真实验,GWO_PSO算法的收敛速度和精度相较与粒子群优化(Particle swarm optimization,PSO)和GWO都有了极大的提高,相较于其他的改进灰狼算法,GWO_PSO表现出不错的寻优能力。
文摘车辆路径问题旨在求解每辆车的服务路线,使其在完成配送任务的情况下行驶距离之和最短,是运筹学中经典的组合优化问题,属于NP难问题,且具有较高的理论意义与实际应用价值。针对该问题,提出了一种基于分层学习和差分进化的混合粒子群优化算法(Hybrid Particle Swarm Optimization Algorithm Based on Hierarchical Learning and Different Evolution,DEHSLPSO)。DE-HSLPSO中引入了分层学习策略,以适应度值和迭代次数为依据将种群粒子动态划分为3层,在前两层粒子的进化过程中引入了社会学习机制,而第三层粒子进行差分进化,通过变异和交叉有效地增加粒子的多样性,从而开拓空间,有利于跳出局部最优。通过在经典的CVRP数据集上进行仿真实验,来探究DE-HSLPSO各部分对整体性能的影响,实验证明分层策略与差分进化均可提升算法的整体性能。另外,在7个基本算例上对DE-HSLPSO与其他优化算法进行了测试,综合时间与最优解进行对比,结果表明DE-HSLPSO的求解性能优于其他对比算法。