Assimilation of snow cover is an important method to improve the accuracy of snow simulation. However, the effects of snow assimilation are poor because satellite observed snow cover data contain erroneous information...Assimilation of snow cover is an important method to improve the accuracy of snow simulation. However, the effects of snow assimilation are poor because satellite observed snow cover data contain erroneous information, such as cloud contamination. In this paper, an improved approach is proposed to reduce the effects of observational errors during assimilation of snow cover fraction acquired by the Fengyun-3(FY-3) satellite in northeastern China. A snow depth constraint was imposed on quality control of a snow depth product from a microwave radiation imager. The assimilation experiments were carried out before and after quality control(denoted as SCFDA and SCFDA_WSD, respectively). The snow cover fraction results were evaluated against the Moderate Resolution Imaging Spectroradiometer(MODIS) snow cover products. When assimilating the snow cover fraction with the snow depth constraint(i.e., SCFDA_WSD), substantially larger improvement was obtained than that without such a constraint/quality control(SCFDA), and the deviation and root mean square error of the snow cover fraction were significantly reduced.The assimilation performance was also evaluated against in-situ snow depth observations. The SCFDA_WSD also showed greater improvements during the snow accumulation and snowmelt periods than the SCFDA. The SCFDA_WSD improvements in woodland and shrubland were the most obvious. At different altitudes, the effects of the SCFDA_WSD were basically equivalent, and the deeper the snow depth was, the better the effect. In addition, the SCFDA_WSD method was found in close agreement with the observations during a sudden snowfall event.展开更多
基金Supported by the National Natural Science Foundation of China(91437220)National Key Research and Development Program of China(2018YFC1506601)China Meteorological Administration Special Public Welfare Research Fund(GYHY201506002)
文摘Assimilation of snow cover is an important method to improve the accuracy of snow simulation. However, the effects of snow assimilation are poor because satellite observed snow cover data contain erroneous information, such as cloud contamination. In this paper, an improved approach is proposed to reduce the effects of observational errors during assimilation of snow cover fraction acquired by the Fengyun-3(FY-3) satellite in northeastern China. A snow depth constraint was imposed on quality control of a snow depth product from a microwave radiation imager. The assimilation experiments were carried out before and after quality control(denoted as SCFDA and SCFDA_WSD, respectively). The snow cover fraction results were evaluated against the Moderate Resolution Imaging Spectroradiometer(MODIS) snow cover products. When assimilating the snow cover fraction with the snow depth constraint(i.e., SCFDA_WSD), substantially larger improvement was obtained than that without such a constraint/quality control(SCFDA), and the deviation and root mean square error of the snow cover fraction were significantly reduced.The assimilation performance was also evaluated against in-situ snow depth observations. The SCFDA_WSD also showed greater improvements during the snow accumulation and snowmelt periods than the SCFDA. The SCFDA_WSD improvements in woodland and shrubland were the most obvious. At different altitudes, the effects of the SCFDA_WSD were basically equivalent, and the deeper the snow depth was, the better the effect. In addition, the SCFDA_WSD method was found in close agreement with the observations during a sudden snowfall event.