We propose a one–step smoothing Newton method for solving the non-linearcomplementarity problem with P 0–function (P_0–NCP) based on the smoothing symmetric perturbedFisher function (for short, denoted as the SSPF...We propose a one–step smoothing Newton method for solving the non-linearcomplementarity problem with P 0–function (P_0–NCP) based on the smoothing symmetric perturbedFisher function (for short, denoted as the SSPF–function). The proposed algorithm has to solve onlyone linear system of equations and performs only one line search per iteration. Without requiringany strict complementarity assumption at the P_0–NCP solution, we show that the proposed algorithmconverges globally and superlinearly under mild conditions. Furthermore, the algorithm has localquadratic convergence under suitable conditions. The main feature of our global convergence resultsis that we do not assume a priori the existence of an accumulation point. Compared to the previousliteratures, our algorithm has stronger convergence results under weaker conditions.展开更多
In this paper, we present a nonmonotone smoothing Newton algorithm for solving the circular cone programming(CCP) problem in which a linear function is minimized or maximized over the intersection of an affine space w...In this paper, we present a nonmonotone smoothing Newton algorithm for solving the circular cone programming(CCP) problem in which a linear function is minimized or maximized over the intersection of an affine space with the circular cone. Based on the relationship between the circular cone and the second-order cone(SOC), we reformulate the CCP problem as the second-order cone problem(SOCP). By extending the nonmonotone line search for unconstrained optimization to the CCP, a nonmonotone smoothing Newton method is proposed for solving the CCP. Under suitable assumptions, the proposed algorithm is shown to be globally and locally quadratically convergent. Some preliminary numerical results indicate the effectiveness of the proposed algorithm for solving the CCP.展开更多
The nonlinear complementarity problem can be reformulated as a nonsmooth equation. In this paper we propose a new smoothing Newton algorithm for the solution of the nonlinear complementarity problem by constructing a ...The nonlinear complementarity problem can be reformulated as a nonsmooth equation. In this paper we propose a new smoothing Newton algorithm for the solution of the nonlinear complementarity problem by constructing a new smoothing approximation function. Global and local superlinear convergence results of the algorithm are obtained under suitable conditions. Numerical experiments confirm the good theoretical properties of the algorithm.展开更多
Based on the differential properties of the smoothing metric projector onto the second-order cone,we prove that,for a locally optimal solution to a nonlinear second-order cone programming problem,the nonsingularity of...Based on the differential properties of the smoothing metric projector onto the second-order cone,we prove that,for a locally optimal solution to a nonlinear second-order cone programming problem,the nonsingularity of the Clarke's generalized Jacobian of the smoothing Karush-Kuhn-Tucker system,constructed by the smoothing metric projector,is equivalent to the strong second-order sufficient condition and constraint nondegeneracy,which is in turn equivalent to the strong regularity of the Karush-Kuhn-Tucker point.Moreover,this nonsingularity property guarantees the quadratic convergence of the corresponding smoothing Newton method for solving a Karush-Kuhn-Tucker point.Interestingly,the analysis does not need the strict complementarity condition.展开更多
We consider an inverse quadratic programming (IQP) problem in which the parameters in the objective function of a given quadratic programming (QP) problem are adjusted as little as possible so that a known feasibl...We consider an inverse quadratic programming (IQP) problem in which the parameters in the objective function of a given quadratic programming (QP) problem are adjusted as little as possible so that a known feasible solution becomes the optimal one. This problem can be formulated as a minimization problem with a positive semidefinite cone constraint and its dual (denoted IQD(A, b)) is a semismoothly differentiable (SC^1) convex programming problem with fewer variables than the original one. In this paper a smoothing Newton method is used for getting a Karush-Kuhn-Tucker point of IQD(A, b). The proposed method needs to solve only one linear system per iteration and achieves quadratic convergence. Numerical experiments are reported to show that the smoothing Newton method is effective for solving this class of inverse quadratic programming problems.展开更多
基金This work is partly supported by the National Natural Science Foundation of China(Grant,Nos.10271002,10201001)
文摘We propose a one–step smoothing Newton method for solving the non-linearcomplementarity problem with P 0–function (P_0–NCP) based on the smoothing symmetric perturbedFisher function (for short, denoted as the SSPF–function). The proposed algorithm has to solve onlyone linear system of equations and performs only one line search per iteration. Without requiringany strict complementarity assumption at the P_0–NCP solution, we show that the proposed algorithmconverges globally and superlinearly under mild conditions. Furthermore, the algorithm has localquadratic convergence under suitable conditions. The main feature of our global convergence resultsis that we do not assume a priori the existence of an accumulation point. Compared to the previousliteratures, our algorithm has stronger convergence results under weaker conditions.
基金supported by the National Natural Science Foundation of China(11401126,71471140 and 11361018)Guangxi Natural Science Foundation(2016GXNSFBA380102 and 2014GXNSFFA118001)+2 种基金Guangxi Key Laboratory of Cryptography and Information Security(GCIS201618)Guangxi Key Laboratory of Automatic Detecting Technology and Instruments(YQ15112 and YQ16112)China
文摘In this paper, we present a nonmonotone smoothing Newton algorithm for solving the circular cone programming(CCP) problem in which a linear function is minimized or maximized over the intersection of an affine space with the circular cone. Based on the relationship between the circular cone and the second-order cone(SOC), we reformulate the CCP problem as the second-order cone problem(SOCP). By extending the nonmonotone line search for unconstrained optimization to the CCP, a nonmonotone smoothing Newton method is proposed for solving the CCP. Under suitable assumptions, the proposed algorithm is shown to be globally and locally quadratically convergent. Some preliminary numerical results indicate the effectiveness of the proposed algorithm for solving the CCP.
基金This work is supported by the National Natural Science Foundation of China.
文摘The nonlinear complementarity problem can be reformulated as a nonsmooth equation. In this paper we propose a new smoothing Newton algorithm for the solution of the nonlinear complementarity problem by constructing a new smoothing approximation function. Global and local superlinear convergence results of the algorithm are obtained under suitable conditions. Numerical experiments confirm the good theoretical properties of the algorithm.
基金supported by National Natural Science Foundation of China (Grant Nos.10771026,10901094)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry of China
文摘Based on the differential properties of the smoothing metric projector onto the second-order cone,we prove that,for a locally optimal solution to a nonlinear second-order cone programming problem,the nonsingularity of the Clarke's generalized Jacobian of the smoothing Karush-Kuhn-Tucker system,constructed by the smoothing metric projector,is equivalent to the strong second-order sufficient condition and constraint nondegeneracy,which is in turn equivalent to the strong regularity of the Karush-Kuhn-Tucker point.Moreover,this nonsingularity property guarantees the quadratic convergence of the corresponding smoothing Newton method for solving a Karush-Kuhn-Tucker point.Interestingly,the analysis does not need the strict complementarity condition.
基金supported by the National Natural Science Foundation of China under project No. 10771026by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry of China
文摘We consider an inverse quadratic programming (IQP) problem in which the parameters in the objective function of a given quadratic programming (QP) problem are adjusted as little as possible so that a known feasible solution becomes the optimal one. This problem can be formulated as a minimization problem with a positive semidefinite cone constraint and its dual (denoted IQD(A, b)) is a semismoothly differentiable (SC^1) convex programming problem with fewer variables than the original one. In this paper a smoothing Newton method is used for getting a Karush-Kuhn-Tucker point of IQD(A, b). The proposed method needs to solve only one linear system per iteration and achieves quadratic convergence. Numerical experiments are reported to show that the smoothing Newton method is effective for solving this class of inverse quadratic programming problems.