为减少电动汽车(electric vehicle,EV)无序充放电对电网造成的冲击影响和促进新能源消纳,考虑EV集群的储能能力和可调备用负荷特性,提出一种基于补偿激励用户引导的电动汽车-新能源-区域电网联合优化调度控制策略。充分考虑车主充放电...为减少电动汽车(electric vehicle,EV)无序充放电对电网造成的冲击影响和促进新能源消纳,考虑EV集群的储能能力和可调备用负荷特性,提出一种基于补偿激励用户引导的电动汽车-新能源-区域电网联合优化调度控制策略。充分考虑车主充放电意向和所能接受的充电成本,建立EV充放电服务系统(electric vehicle charging and discharging service system,EV-CDSS)。利用接入系统的EV集群储能作用,辅助区域火电,平抑区域电网功率的波动,改善EV无序充放电,并提高区域电网稳定性和节省EV充电成本。以典型的区域配电网负荷及风光电厂输出功率数据为例,通过仿真,验证了所搭建的EV-CDSS及控制策略的可行性和有效性。展开更多
To address the impact of wind-power fluctuations on the stability of power systems,we propose a comprehensive approach that integrates multiple strategies and methods to enhance the efficiency and reliability of a sys...To address the impact of wind-power fluctuations on the stability of power systems,we propose a comprehensive approach that integrates multiple strategies and methods to enhance the efficiency and reliability of a system.First,we employ a strategy that restricts long-and short-term power output deviations to smoothen wind power fluctuations in real time.Second,we adopt the sliding window instantaneous complete ensemble empirical mode decomposition with adaptive noise(SW-ICEEMDAN)strategy to achieve real-time decomposition of the energy storage power,facilitating internal power distribution within the hybrid energy storage system.Finally,we introduce a rule-based multi-fuzzy control strategy for the secondary adjustment of the initial power allocation commands for different energy storage components.Through simulation validation,we demonstrate that the proposed comprehensive control strategy can smoothen wind power fluctuations in real time and decompose energy storage power.Compared with traditional empirical mode decomposition(EMD),ensemble empirical mode decomposition(EEMD),and complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN)decomposition strategies,the configuration of the energy storage system under the SW-ICEEMDAN control strategy is more optimal.Additionally,the state-of-charge of energy storage components fluctuates within a reasonable range,enhancing the stability of the power system and ensuring the secure operation of the energy storage system.展开更多
This work presents a novel coordinated control strategy of a hybrid photovoltaic/battery energy storage(PV/BES) system. Different controller operation modes are simulated considering normal, high fluctuation and emerg...This work presents a novel coordinated control strategy of a hybrid photovoltaic/battery energy storage(PV/BES) system. Different controller operation modes are simulated considering normal, high fluctuation and emergency conditions. When the system is grid-connected, BES regulates the fluctuated power output which ensures smooth net injected power from the PV/BES system. In islanded operation, BES system is transferred to single master operation during which the frequency and voltage of the islanded microgrid are regulated at the desired level. PSCAD/EMTDC simulation validates the proposed method and obtained favorable results on power set-point tracking strategies with very small deviations of net output power compared to the power set-point. The state-of-charge regulation scheme also very effective with SOC has been regulated between 32% and 79% range.展开更多
文摘为减少电动汽车(electric vehicle,EV)无序充放电对电网造成的冲击影响和促进新能源消纳,考虑EV集群的储能能力和可调备用负荷特性,提出一种基于补偿激励用户引导的电动汽车-新能源-区域电网联合优化调度控制策略。充分考虑车主充放电意向和所能接受的充电成本,建立EV充放电服务系统(electric vehicle charging and discharging service system,EV-CDSS)。利用接入系统的EV集群储能作用,辅助区域火电,平抑区域电网功率的波动,改善EV无序充放电,并提高区域电网稳定性和节省EV充电成本。以典型的区域配电网负荷及风光电厂输出功率数据为例,通过仿真,验证了所搭建的EV-CDSS及控制策略的可行性和有效性。
基金supported by the National Natural Science Foundation of China(Grant No.51677058)。
文摘To address the impact of wind-power fluctuations on the stability of power systems,we propose a comprehensive approach that integrates multiple strategies and methods to enhance the efficiency and reliability of a system.First,we employ a strategy that restricts long-and short-term power output deviations to smoothen wind power fluctuations in real time.Second,we adopt the sliding window instantaneous complete ensemble empirical mode decomposition with adaptive noise(SW-ICEEMDAN)strategy to achieve real-time decomposition of the energy storage power,facilitating internal power distribution within the hybrid energy storage system.Finally,we introduce a rule-based multi-fuzzy control strategy for the secondary adjustment of the initial power allocation commands for different energy storage components.Through simulation validation,we demonstrate that the proposed comprehensive control strategy can smoothen wind power fluctuations in real time and decompose energy storage power.Compared with traditional empirical mode decomposition(EMD),ensemble empirical mode decomposition(EEMD),and complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN)decomposition strategies,the configuration of the energy storage system under the SW-ICEEMDAN control strategy is more optimal.Additionally,the state-of-charge of energy storage components fluctuates within a reasonable range,enhancing the stability of the power system and ensuring the secure operation of the energy storage system.
文摘This work presents a novel coordinated control strategy of a hybrid photovoltaic/battery energy storage(PV/BES) system. Different controller operation modes are simulated considering normal, high fluctuation and emergency conditions. When the system is grid-connected, BES regulates the fluctuated power output which ensures smooth net injected power from the PV/BES system. In islanded operation, BES system is transferred to single master operation during which the frequency and voltage of the islanded microgrid are regulated at the desired level. PSCAD/EMTDC simulation validates the proposed method and obtained favorable results on power set-point tracking strategies with very small deviations of net output power compared to the power set-point. The state-of-charge regulation scheme also very effective with SOC has been regulated between 32% and 79% range.