由于目前在小型无人机执行器故障诊断中存在着智能化程度较低,容易受到人为因素干扰,从而出现故障漏检等问题,难以满足小型无人机对飞行安全的要求;为此,提出一种基于多维数据关联规则挖掘(multidimensional data association rules min...由于目前在小型无人机执行器故障诊断中存在着智能化程度较低,容易受到人为因素干扰,从而出现故障漏检等问题,难以满足小型无人机对飞行安全的要求;为此,提出一种基于多维数据关联规则挖掘(multidimensional data association rules mining,MDARM)和VxWorks操作系统的小型无人机执行器故障诊断方法,通过建立执行器内部传感器测量的温度、压力、流速、力矩等相关变量的历史数据库,并对这些数据进行预处理,以避免带来噪声污染,并利用可测量参数与不可测量参数之间的关联性,建立故障诊断知识库,避免了诊断过程中的人为因素干扰,实现小型无人机执行器故障的精准测量;实验结果证明,这种方法能够有效地提高故障准确率64.7%,对小型无人机执行器的智能诊提供有效指导,应用前景广阔。展开更多
This paper presents a hierarchical simultaneous localization and mapping(SLAM) system for a small unmanned aerial vehicle(UAV) using the output of an inertial measurement unit(IMU) and the bearing-only observati...This paper presents a hierarchical simultaneous localization and mapping(SLAM) system for a small unmanned aerial vehicle(UAV) using the output of an inertial measurement unit(IMU) and the bearing-only observations from an onboard monocular camera.A homography based approach is used to calculate the motion of the vehicle in 6 degrees of freedom by image feature match.This visual measurement is fused with the inertial outputs by an indirect extended Kalman filter(EKF) for attitude and velocity estimation.Then,another EKF is employed to estimate the position of the vehicle and the locations of the features in the map.Both simulations and experiments are carried out to test the performance of the proposed system.The result of the comparison with the referential global positioning system/inertial navigation system(GPS/INS) navigation indicates that the proposed SLAM can provide reliable and stable state estimation for small UAVs in GPS-denied environments.展开更多
文摘由于目前在小型无人机执行器故障诊断中存在着智能化程度较低,容易受到人为因素干扰,从而出现故障漏检等问题,难以满足小型无人机对飞行安全的要求;为此,提出一种基于多维数据关联规则挖掘(multidimensional data association rules mining,MDARM)和VxWorks操作系统的小型无人机执行器故障诊断方法,通过建立执行器内部传感器测量的温度、压力、流速、力矩等相关变量的历史数据库,并对这些数据进行预处理,以避免带来噪声污染,并利用可测量参数与不可测量参数之间的关联性,建立故障诊断知识库,避免了诊断过程中的人为因素干扰,实现小型无人机执行器故障的精准测量;实验结果证明,这种方法能够有效地提高故障准确率64.7%,对小型无人机执行器的智能诊提供有效指导,应用前景广阔。
基金supported by National High Technology Research Development Program of China (863 Program) (No.2011AA040202)National Science Foundation of China (No.51005008)
文摘This paper presents a hierarchical simultaneous localization and mapping(SLAM) system for a small unmanned aerial vehicle(UAV) using the output of an inertial measurement unit(IMU) and the bearing-only observations from an onboard monocular camera.A homography based approach is used to calculate the motion of the vehicle in 6 degrees of freedom by image feature match.This visual measurement is fused with the inertial outputs by an indirect extended Kalman filter(EKF) for attitude and velocity estimation.Then,another EKF is employed to estimate the position of the vehicle and the locations of the features in the map.Both simulations and experiments are carried out to test the performance of the proposed system.The result of the comparison with the referential global positioning system/inertial navigation system(GPS/INS) navigation indicates that the proposed SLAM can provide reliable and stable state estimation for small UAVs in GPS-denied environments.