期刊文献+
共找到178篇文章
< 1 2 9 >
每页显示 20 50 100
海杂波背景下雷达目标特征检测方法的现状与展望 被引量:54
1
作者 许述文 白晓惠 +1 位作者 郭子薰 水鹏朗 《雷达学报(中英文)》 CSCD 北大核心 2020年第4期684-714,共31页
海杂波背景下的雷达目标检测对民用和军事都有着重要的意义。随着海面目标的小型化和隐身化,海面慢速、漂浮小目标已经成为了雷达警戒的重点对象。关于此类小目标的检测一直以来都是海杂波背景下目标检测中的难题。通常,漂浮小目标的雷... 海杂波背景下的雷达目标检测对民用和军事都有着重要的意义。随着海面目标的小型化和隐身化,海面慢速、漂浮小目标已经成为了雷达警戒的重点对象。关于此类小目标的检测一直以来都是海杂波背景下目标检测中的难题。通常,漂浮小目标的雷达散射横截面积(RCS)微弱,并且运动速度慢,常常在时域和频域均存在"超杂波检测"的困难。传统目标检测方法对漂浮小目标的检测存在明显的性能瓶颈。对于海面漂浮小目标的检测,采用高多普勒和高距离分辨体制("双高"体制)是从雷达体制上解决这个问题的有效途径。在双高体制下,雷达接收的目标回波提供了更多的可用信息。然而,如何将这些更加精细化的信息转化为探测性能的提升,一直以来都是雷达届关注的难点,相关科研成果也一直在不断地推陈出新。近些年,在双高雷达体制下,学者们提出了多种基于特征的目标检测方法,作为对海智能检测的人工特征工程阶段,这些方法缓解了仅依靠能量信息较难检测小目标的困难局面,极大程度地改善了对漂浮小目标的检测性能。为了更好地让相关雷达从业者了解该领域这些年的发展和未来的趋势,该文首先总结了对海检测的难点和常用的目标检测方法,然后分析了特征检测的原理和通用框架以及国内外几种典型的基于特征的检测方法,最后对特征检测方法发展趋势进行了展望。 展开更多
关键词 海杂波 漂浮小目标 雷达目标检测 特征提取 特征检测
下载PDF
改进的SSD算法及其对遥感影像小目标检测性能的分析 被引量:49
2
作者 王俊强 李建胜 +1 位作者 周学文 张旭 《光学学报》 EI CAS CSCD 北大核心 2019年第6期365-374,共10页
针对以Faster R-CNN为代表的基于候选框方式的遥感影像目标检测方法检测速度慢,而现有SSD算法在小目标检测中性能低的问题,提出一种改进的SSD算法,综合利用现有基于候选框方式和一体化检测方式的优势,提升检测性能。该算法利用密集连接... 针对以Faster R-CNN为代表的基于候选框方式的遥感影像目标检测方法检测速度慢,而现有SSD算法在小目标检测中性能低的问题,提出一种改进的SSD算法,综合利用现有基于候选框方式和一体化检测方式的优势,提升检测性能。该算法利用密集连接网络替换原有的VGGNet作为骨干网络,并且在密集连接模块之间构建特征金字塔,代替原有多尺度特征图。为验证所提算法的精度及性能,设计样本数据在线采集系统,并采集飞机及运动场目标样本集作为实验样本,通过对改进SSD算法的训练,验证了其网络结构的稳定性,在无迁移学习支持下依然能够达到良好效果,且训练过程不易发散。通过对比以101层的残差网络(ResNet101)作为基础网络的Faster R-CNN算法和R-FCN算法可知,改进SSD算法较Faster R-CNN算法和R-FCN算法的MAP在测试集上分别提升了9.13%和8.48%,小目标检测的MAP分别提升了14.46%和13.92%,检测单张影像耗时71.8 ms,较Faster R-CNN和R-FCN算法分别减少45.7 ms和7.5 ms。 展开更多
关键词 遥感 小目标检测 深度学习 多尺度预测 特征金字塔 平均准确率均值
原文传递
采用多尺度特征融合SSD的遥感图像小目标检测 被引量:29
3
作者 陈欣 万敏杰 +2 位作者 马超 陈钱 顾国华 《光学精密工程》 EI CAS CSCD 北大核心 2021年第11期2672-2682,共11页
针对复杂背景下遥感小目标的检测问题,提出了一种改进型多尺度特征融合SSD方法。设计了一种特征图融合机制,将分辨率高的浅层特征图与具有丰富语义信息的深层特征图进行融合,并在特征图间构建特征金字塔,对小目标特征进行增强。然后,引... 针对复杂背景下遥感小目标的检测问题,提出了一种改进型多尺度特征融合SSD方法。设计了一种特征图融合机制,将分辨率高的浅层特征图与具有丰富语义信息的深层特征图进行融合,并在特征图间构建特征金字塔,对小目标特征进行增强。然后,引入通道注意力模块,通过构建权重参数空间,将注意力集中在关注目标区域的通道,以减小背景干扰。最后,对先验框相对于原图的比例进行了调整,使它能够更好地适应遥感小目标尺度。利用采集的遥感飞机图像数据集对方法性能进行定性和定量测试。结果表明:改进方法的检测精度相较SSD提高了4.3%,并能够适应复杂场景下的遥感多尺度目标检测任务,降低小目标的漏检率。 展开更多
关键词 深度学习 小目标检测 复杂背景 特征融合 通道注意力机制
下载PDF
一种远距离行人小目标检测方法 被引量:22
4
作者 石欣 卢灏 +1 位作者 秦鹏杰 冷正立 《仪器仪表学报》 EI CAS CSCD 北大核心 2022年第5期136-146,共11页
远距离行人小目标成像像素少、缺乏纹理信息,深度卷积神经网络难以提取小目标细粒度特征,难以准确识别与检测。本文提出一种远距离行人小目标检测方法。首先,在YOLOv4的基础上引入浅层特征改进特征金字塔,提取行人小目标细粒度特征,提... 远距离行人小目标成像像素少、缺乏纹理信息,深度卷积神经网络难以提取小目标细粒度特征,难以准确识别与检测。本文提出一种远距离行人小目标检测方法。首先,在YOLOv4的基础上引入浅层特征改进特征金字塔,提取行人小目标细粒度特征,提出引力模型特征自适应融合方法,增加多层次语义信息之间的关联度,防止小目标特征信息流失。然后,采用增强型超分辨率生成对抗网络增加行人小目标特征数量,提高行人小目标检测准确率。最后,选取图像像素中占比范围为0.004%~0.026%的行人小目标建立试验数据集,通过与Faster RCNN、ION、YOLOv4对比实验验证。结果表明,本文方法mAP_(0.5)提高了25.2%、26.3%、11.9%,FPS达到24,研究成果在远距离安防监测监控领域具有重要应用价值。 展开更多
关键词 行人小目标 特征增强 特征自适应融合 引力模型 目标检测
下载PDF
基于改进Faster R-CNN的钢材表面缺陷检测方法 被引量:20
5
作者 杨莉 张亚楠 +1 位作者 王婷婷 刘添翼 《吉林大学学报(信息科学版)》 CAS 2021年第4期409-415,共7页
针对传统Faster R-CNN(Region-Convolutional Neural Networks)检测钢材表面小目标性缺陷性能差的问题,提出了一种基于改进Faster R-CNN的钢材表面缺陷检测方法。首先引入导向锚点候选区域网络(GA-RPN:Guided Anchoring Region Proposal... 针对传统Faster R-CNN(Region-Convolutional Neural Networks)检测钢材表面小目标性缺陷性能差的问题,提出了一种基于改进Faster R-CNN的钢材表面缺陷检测方法。首先引入导向锚点候选区域网络(GA-RPN:Guided Anchoring Region Proposal Network)预测锚点的位置和形状,设计可调节机制解决网络锚点形状偏移量超出感兴趣区域的问题,从而解决无关特征的影响;其次,提出多任务FPN(Feature Pyramid Network)结构缩短高层特征定位信息映射路径,并能解决相邻层特征融合再采样的不充分特征融合,提高小目标检测性能。将改进的Faster R-CNN算法应用于钢材表面缺陷检测。仿真结果表明,改进的网络其召回率与准确率都得到提高,具有更好的检测性能。 展开更多
关键词 钢材表面缺陷 神经网络 小目标检测 特征融合
下载PDF
改进YOLOv3在机场跑道异物目标检测中的应用 被引量:19
6
作者 郭晓静 隋昊达 《计算机工程与应用》 CSCD 北大核心 2021年第8期249-255,共7页
针对机场跑道异物(Foreign Object Debris,FOD)的小目标特点,提出一种基于改进YOLOv3的FOD目标检测算法。以YOLOv3网络为基础,采用运算复杂度相对更低的Darknet-49作为特征提取网络,并将检测尺度增加至4个,进行多尺度特征融合。使用基... 针对机场跑道异物(Foreign Object Debris,FOD)的小目标特点,提出一种基于改进YOLOv3的FOD目标检测算法。以YOLOv3网络为基础,采用运算复杂度相对更低的Darknet-49作为特征提取网络,并将检测尺度增加至4个,进行多尺度特征融合。使用基于马尔科夫链蒙特卡罗采样(Markov Chain Monte Carlo sampling,MCMC)的K-means++算法对标注边界框尺寸信息进行聚类分析。训练时引入GIoU边界框回归损失函数。实验结果表明,改进的YOLOv3目标检测算法在满足实时性要求的情况下,精确率和召回率达到了95.3%和91.1%,与Faster R-CNN相比具有更高的检测速度,与SSD相比具有更高的检测精度,有效解决了原YOLOv3存在的定位精度偏低和漏检问题。 展开更多
关键词 机场跑道异物 小目标检测 特征融合 聚类分析 损失函数
下载PDF
基于小波变换与特征提取的红外弱小目标图像融合 被引量:17
7
作者 王晓柱 钮赛赛 +2 位作者 张凯 印剑飞 闫杰 《西北工业大学学报》 EI CAS CSCD 北大核心 2020年第4期723-732,共10页
当前红外单波段数据不能全面反映图像细节以及轮廓信息,弱小目标成像后难以抵抗背景干扰,使得图像产生较低的信噪比。因此有必要利用不同波段数据的纹理差异性,通过互补融合方法提高图像的信噪比。基于此,提出一种基于小波变换与特征提... 当前红外单波段数据不能全面反映图像细节以及轮廓信息,弱小目标成像后难以抵抗背景干扰,使得图像产生较低的信噪比。因此有必要利用不同波段数据的纹理差异性,通过互补融合方法提高图像的信噪比。基于此,提出一种基于小波变换与特征提取的融合方法。首先将多源图像进行多尺度二维分解,获得各图像的低频信息与高频信息,在此基础上,高频信息采取绝对值取大的融合方法,低频信息采取加权求平均的融合方法,进而重构图像。然后,利用特征提取方法得到中波与长波特征图像。最后对重构图像与红外中长波特征图像进行对比度调制再融合。融合结果与多种融合算法进行对比。实验结果表明,该算法能够增强图像中弱小目标的灰度,可以很好地识别目标,解决了图像中弱小目标抗背景干扰的问题。 展开更多
关键词 红外双波段融合 弱小目标 小波变换 特征提取
下载PDF
改进YOLOv5的交通标志检测算法 被引量:12
8
作者 胡昭华 王莹 《计算机工程与应用》 CSCD 北大核心 2023年第1期82-91,共10页
交通标志检测在自动驾驶、辅助驾驶等领域是一个重要的环节,关乎到行车安全问题。针对交通标志中存在目标小、背景复杂等难点,提出一种基于改进YOLOv5的算法。提出区域上下文模块,利用多种扩张率的空洞卷积来获取不同感受野,进而获取到... 交通标志检测在自动驾驶、辅助驾驶等领域是一个重要的环节,关乎到行车安全问题。针对交通标志中存在目标小、背景复杂等难点,提出一种基于改进YOLOv5的算法。提出区域上下文模块,利用多种扩张率的空洞卷积来获取不同感受野,进而获取到目标及其相邻区域的特征信息,相邻区域的信息对交通标志小目标检测起到重要补充作用,可以有效解决目标小的问题;在主干部分引入特征增强模块,进一步提高主干的特征提取能力,利用注意力机制与原C3模块结合,使网络更能聚焦小目标信息,避免复杂背景的干扰;在多尺度检测部分,将浅层特征层与深层检测层进行特征融合,可以同时兼顾浅层位置信息与深层语义信息,增加目标定位与边界回归的准确度,更有利于小目标检测。实验结果表明,改进后的算法在交通标志检测数据集TT100K上取得了87.2%的小目标检测精度、92.4%的小目标召回率以及91.8%的mAP,与原YOLOv5算法相比较,分别提升了3.5、4.1、2.6个百分点,检测速度83.3 frame/s;在CCTSDB数据集上mAP为98.0%,提升了2.0个百分点,检测速度90.9 frame/s。因此,提出的改进YOLOv5算法可以有效提高交通标志检测精度以及召回率,且检测速度相当。 展开更多
关键词 小目标检测 YOLOv5 交通标志检测 区域上下文 特征增强 多尺度检测
下载PDF
航空遥感影像中的轻量级小目标检测 被引量:13
9
作者 薛雅丽 孙瑜 马瀚融 《电光与控制》 CSCD 北大核心 2022年第6期11-15,共5页
单阶段目标检测算法凭借结构简单、模型高效等特点获得很多研究者及工业界的关注。以现有的YOLO算法为基础,针对遥感图像中目标尺寸小、排列紧密等困难,提出一种提升复杂背景下小目标检测精度的轻量级目标检测方法。该方法引入加权融合... 单阶段目标检测算法凭借结构简单、模型高效等特点获得很多研究者及工业界的关注。以现有的YOLO算法为基础,针对遥感图像中目标尺寸小、排列紧密等困难,提出一种提升复杂背景下小目标检测精度的轻量级目标检测方法。该方法引入加权融合特征网络,为每层特征图赋予可在训练中不断学习的权重系数,加强深浅层特征融合。通过引入CIoU损失及模型改进,加快网络收敛速度,使其满足实时性需求。在基于DOTA构建的遥感图像小目标数据集上进行对比实验,结果表明,该方法具有更好的检测精度与检测速度。 展开更多
关键词 深度学习 目标检测 遥感图像 小目标 特征融合
下载PDF
基于多尺度加权特征融合网络的地铁行人目标检测算法 被引量:14
10
作者 董小伟 韩悦 +4 位作者 张正 曲洪斌 高国飞 陈明钿 李博 《电子与信息学报》 EI CSCD 北大核心 2021年第7期2113-2120,共8页
随着地铁乘客的大量增加,实时准确地监测地铁站内客流量对于保证乘客安全具有重要意义。针对地铁场景复杂、行人目标小等特点,该文提出了多尺度加权特征融合(MWF)网络,实现地铁客流量的精准实时监测。在数据预处理阶段,该文提出过采样... 随着地铁乘客的大量增加,实时准确地监测地铁站内客流量对于保证乘客安全具有重要意义。针对地铁场景复杂、行人目标小等特点,该文提出了多尺度加权特征融合(MWF)网络,实现地铁客流量的精准实时监测。在数据预处理阶段,该文提出过采样目标增强算法,对小目标占比不足的图片进行拼接处理,增加小目标在训练时的迭代频率。其次,在单镜头多核检测器(SSD)网络基础上添加了基于VGG16网络的特征提取层,将不同尺度的特征层以不同方式进行加权融合,并选出最优的特征融合方式。最终,结合小目标过采样增强算法,得到多尺度加权特征融合模型。实验证明,该方法与SSD网络相比,在保证实时性的同时,检测精度提升了5.82%。 展开更多
关键词 目标检测 小目标 深度网络 加权特征融合
下载PDF
基于反卷积和特征融合的SSD小目标检测算法 被引量:12
11
作者 赵文清 周震东 翟永杰 《智能系统学报》 CSCD 北大核心 2020年第2期310-316,共7页
由于小目标的低分辨率和噪声等影响,大多数目标检测算法不能有效利用特征图中小目标的边缘信息和语义信息,导致其特征与背景难以区分,检测效果差。为解决SSD(single shot multibox detector)模型中小目标特征信息不足的缺陷,提出反卷积... 由于小目标的低分辨率和噪声等影响,大多数目标检测算法不能有效利用特征图中小目标的边缘信息和语义信息,导致其特征与背景难以区分,检测效果差。为解决SSD(single shot multibox detector)模型中小目标特征信息不足的缺陷,提出反卷积和特征融合的方法。先采用反卷积作用于浅层特征层,增大特征图分辨率,然后将SSD模型中卷积层conv112的特征图上采样,拼接得到新的特征层,最后将新的特征层与SSD模型中固有的4个尺度的特征层进行融合。通过将改进后的方法与VOC2007数据集和KITTI车辆检测数据集上的SSD和DSSD方法进行比较,结果表明:该方法降低了小目标的漏检率,并提升整体目标的平均检测准确率。 展开更多
关键词 小目标检测 反卷积 特征映射 多尺度 特征融合 SSD模型 PASCAL VOC数据集 KITTI数据集
下载PDF
基于特征融合的SSD视觉小目标检测 被引量:12
12
作者 王冬丽 廖春江 +1 位作者 牟金震 周彦 《计算机工程与应用》 CSCD 北大核心 2020年第16期31-36,共6页
针对SSD算法在检测目标过程中对小目标检测效果差的缺陷,提出了特征融合的SSD方法。该方法充分融合深浅层特征信息以提升网络模型对小目标的检测能力,为更好地检测小目标,将先验框尺寸相对原图比列进行调整,同时对SSD模型相应超参数值... 针对SSD算法在检测目标过程中对小目标检测效果差的缺陷,提出了特征融合的SSD方法。该方法充分融合深浅层特征信息以提升网络模型对小目标的检测能力,为更好地检测小目标,将先验框尺寸相对原图比列进行调整,同时对SSD模型相应超参数值进行调整。实验结果表明,检测精度mAP较SSD提高3.4个百分点,对小目标Bottle、Chair、Plant检测精度分别提升8.7个百分点、3.4个百分点和7.1个百分点。检测精度mAP较当前一系列性能优异的目标检测算法有显著提高。通过拓展实验进一步证明改进算法成功检测到了大多数SSD算法没有检测到的小目标,提高了平均检测准确率。 展开更多
关键词 小目标检测 特征融合 SSD(Single Shot Multibox Detector) 特征增强 PASCAL VOC2007
下载PDF
基于YOLOv5s的无人机密集小目标检测算法 被引量:8
13
作者 韩俊 袁小平 +1 位作者 王准 陈烨 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2023年第6期1224-1233,共10页
针对无人机图像中背景复杂、小目标数量多且分布密集的特点,提出基于YOLOv5s的无人机密集小目标检测算法LSA_YOLO.构造多尺度特征提取模块LM-fem,增强网络的特征提取能力.为了抑制复杂背景的干扰,使算法关注目标信息,提出依靠多尺度上... 针对无人机图像中背景复杂、小目标数量多且分布密集的特点,提出基于YOLOv5s的无人机密集小目标检测算法LSA_YOLO.构造多尺度特征提取模块LM-fem,增强网络的特征提取能力.为了抑制复杂背景的干扰,使算法关注目标信息,提出依靠多尺度上下文信息的、新的混合域注意力模块S-ECA.设计自适应权重动态融合结构AFF,为浅层特征和深层特征合理分配融合权重.将S-ECA、AFF应用于PANet结构,提高算法在复杂背景下的密集小目标检测能力.使用损失函数Focal-EIOU代替损失函数CIOU,增强模型检测性能.在公开数据集VisDrone2021上的实验结果表明,当设置输入分辨率为1 504×1 504时,对所有目标类别的平均检测精度从YOLOv5s的51.5%提高到LSA_YOLO的57.6%. 展开更多
关键词 无人机 小目标检测 多尺度特征 注意力机制 特征融合
下载PDF
融合特征增强和自注意力的SSD小目标检测算法 被引量:9
14
作者 张馨月 降爱莲 《计算机工程与应用》 CSCD 北大核心 2022年第5期247-255,共9页
SSD是一种多尺度目标检测算法,由于浅层特征图缺乏语义信息,导致小目标的检测准确率低。针对这个问题,提出一种融合特征增强和自注意力的SSD小目标检测算法FA-SSD。该算法在SSD基础上构建一条自深向浅的递归反向路径,此路径包含三个模块... SSD是一种多尺度目标检测算法,由于浅层特征图缺乏语义信息,导致小目标的检测准确率低。针对这个问题,提出一种融合特征增强和自注意力的SSD小目标检测算法FA-SSD。该算法在SSD基础上构建一条自深向浅的递归反向路径,此路径包含三个模块:深层特征增强模块利用路径深层多尺度特征图生成的上下文信息和最深层特征图的语义信息,增强深层特征信息的表达能力;上采样特征增强模块通过扩大特征图的感受野,增强反向路径中上采样特征图的语义信息;自适应特征融合模块引入自注意力机制自适应地融合相邻的浅层特征图和上采样特征图,生成新的具有强语义和精确位置信息的特征图。实验结果显示,在PASCAL VOC和TT100K数据集上,FASSD的mAP最高达到了92.5%和80.2%,表明该检测算法能够增强浅层特征图的语义信息,对于复杂场景下的小目标有着较好的检测效果。 展开更多
关键词 小目标检测 特征增强 自注意力机制 特征融合 上下文信息
下载PDF
基于多域多维特征融合的海面小目标检测 被引量:10
15
作者 施赛楠 杨静 王杰 《信号处理》 CSCD 北大核心 2020年第12期2099-2106,共8页
多维特征检测技术是提高海面小目标检测的有效途径。为了进一步提升海面小目标检测性能,本文提出基于多域多维特征融合的检测方法。首先,从时域、频域、时频域、极化域等多域,充分挖掘海杂波和含目标回波的差异性,并将这些差异性表征为... 多维特征检测技术是提高海面小目标检测的有效途径。为了进一步提升海面小目标检测性能,本文提出基于多域多维特征融合的检测方法。首先,从时域、频域、时频域、极化域等多域,充分挖掘海杂波和含目标回波的差异性,并将这些差异性表征为多维特征,构建高维特征空间。其次,通过极化域和特征域的多维特征线性融合,将多维特征压缩到3D特征空间中,获得高维度信息的同时减少维度计算代价。然后,结合凸包学习算法获得3D判决区域,实现异常检测。最后,基于IPIX实测数据的实验结果表明:相对现有的极化检测器,提出的检测器具有25%以上的显著性能提升。 展开更多
关键词 海杂波 小目标检测 多维特征 特征融合
下载PDF
基于改进SSD算法的小目标检测 被引量:6
16
作者 吴珊 周凤 《计算机工程》 CAS CSCD 北大核心 2023年第7期179-188,195,共11页
SSD属于经典的单阶段目标检测算法,通过在不同卷积层上生成6个尺度的特征图进行预测,但由于其存在浅层特征图的非线性程度不够、语义信息缺乏等问题,且小目标所含像素少,导致小目标在经过多次卷积操作后信息丢失严重,小目标的检测准确... SSD属于经典的单阶段目标检测算法,通过在不同卷积层上生成6个尺度的特征图进行预测,但由于其存在浅层特征图的非线性程度不够、语义信息缺乏等问题,且小目标所含像素少,导致小目标在经过多次卷积操作后信息丢失严重,小目标的检测准确率远低于大中尺度目标的检测准确率。提出多尺度特征与混合注意力机制融合的策略,在替换原骨干网络的基础上构建自下而上的下采样路径和自上而下的上采样路径。具体来说,下采样路径使用自注意力机制自适应地增强浅层空间特征和深层语义特征。在上采样路径中,通过融合3个尺度特征图的局部信息和全局信息,增强深层特征的语义信息,并引入空间注意力机制和坐标注意力机制以丰富待融合特征图的语义信息和位置信息,同时使用自注意力增强模块增强融合特征的表达能力。实验结果表明,当输入图像大小为512×512像素时,所提改进算法在PASCAL VOC和HRRSD数据集上的平均精度均值分别为84.6%、89.6%,与SSD算法相比分别提高了6.1、8.8个百分点。 展开更多
关键词 深度学习 注意力机制 小目标检测 特征增强 特征融合
下载PDF
采用视觉特征整合的红外弱小目标检测 被引量:10
17
作者 赵尚男 王灵杰 +1 位作者 张新 吴洪波 《光学精密工程》 EI CAS CSCD 北大核心 2020年第2期497-506,共10页
针对红外光学系统在复杂背景下的弱小目标检测问题,建立了基于特征整合的信息处理模型,提出了采用视觉特征整合的弱小目标检测方法。该方法首先利用视网膜神经节细胞感受野的数学模型DOG(Different-of-Gaussian)对红外图像进行初级信息... 针对红外光学系统在复杂背景下的弱小目标检测问题,建立了基于特征整合的信息处理模型,提出了采用视觉特征整合的弱小目标检测方法。该方法首先利用视网膜神经节细胞感受野的数学模型DOG(Different-of-Gaussian)对红外图像进行初级信息处理,初步检测出弱小目标。而后,分为空域和频域两个通道进行特征提取。在空域通道,利用图像信息构造二阶微分Hessian矩阵,通过计算其直迹与行列式进行局部极值的判定,提取出含有弱小目标的结构分量特征;在频域通道,利用小波对图像频域进行二级分解,提取出含有弱小目标的高频分量特征。最后,将空域通道与频域通道的分量特征整合,提取出复杂背景下的弱小目标。实验结果表明:当虚警率为10-3时,该方法对弱小目标的平均检测概率为95.17%。基本满足红外弱小目标检测方法的稳定可靠、精度高等要求。 展开更多
关键词 计算机视觉 目标检测 弱小目标 视觉特征整合
下载PDF
基于上下文增强和特征提纯的小目标检测网络 被引量:6
18
作者 肖进胜 赵陶 +2 位作者 周剑 乐秋平 杨力衡 《计算机研究与发展》 EI CSCD 北大核心 2023年第2期465-474,共10页
微小目标的纹理模糊、包含特征少,是目标检测领域的难点.针对小目标检测提出一种新的上下文增强模块(context augmentation module,CAM)和特征提纯模块(feature refinement module,FRM)相结合的特征金字塔复合结构.利用多尺度空洞卷积... 微小目标的纹理模糊、包含特征少,是目标检测领域的难点.针对小目标检测提出一种新的上下文增强模块(context augmentation module,CAM)和特征提纯模块(feature refinement module,FRM)相结合的特征金字塔复合结构.利用多尺度空洞卷积的特征融合,补充网络中的上下文信息;引入通道和空间的特征提纯机制来抑制多尺度特征融合后的冲突信息,防止小目标淹没在冲突信息中;同时,引入复制—缩小—粘贴(copy-reduce-paste)的数据增强方法提高小目标的占比,使训练时小目标对损失值的贡献更大,训练更加平衡.由实验结果可知,所提出的算法在VOC数据集上目标检测的平均精度均值(Mean Average Precision,mAP)达到了83.6%(交并比为0.5);对小目标检测的AP值达到了16.9%(交并比为0.5~0.95),比YOLOV4,CenterNet,RefineDet的分别提高3.9%,7.7%和5.3%.在TinyPerson数据集上小目标检测的AP值为55.1%,比YOLOV5,DSFD的分别提高0.8%和3.5%. 展开更多
关键词 小目标检测 上下文增强 特征提纯 空洞卷积 数据增强
下载PDF
基于改进SSD的车辆小目标检测方法 被引量:9
19
作者 李小宁 雷涛 +2 位作者 钟剑丹 唐自力 蒋平 《应用光学》 CAS CSCD 北大核心 2020年第1期150-155,共6页
地面车辆目标检测问题中由于目标尺寸较小,目标外观信息较少,且易受背景干扰等的原因,较难精确检测到目标。围绕地面小尺寸目标精准检测的问题,从目标特征提取的角度提出了一种特征融合的子网络。该子网络引入了重要的局部细节信息,有... 地面车辆目标检测问题中由于目标尺寸较小,目标外观信息较少,且易受背景干扰等的原因,较难精确检测到目标。围绕地面小尺寸目标精准检测的问题,从目标特征提取的角度提出了一种特征融合的子网络。该子网络引入了重要的局部细节信息,有效地提升了小目标检测效果。针对尺度、角度等的变换问题,设计了基于融合层的扩展层预测子网络,在扩展层的多个尺度空间内匹配目标,生成目标预测框对目标定位。在车辆小目标VEDAI(vehicle detection in aerial imagery)数据集上的实验表明,算法保留传统SSD(single-shot multibox detector)检测速度优势的同时,在精度方面有了明显提升,大幅提升了算法的实用性。 展开更多
关键词 计算机视觉 目标检测 深度学习 车辆小目标 特征融合
下载PDF
HRRP target recognition based on kernel joint discriminant analysis 被引量:8
20
作者 LIU Wenbo YUAN Jiawen +1 位作者 ZHANG Gong SHEN Qian 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第4期703-708,共6页
With the improvement of radar resolution,the dimension of the high resolution range profile(HRRP)has increased.In order to solve the small sample problem caused by the increase of HRRP dimension,an algorithm based on ... With the improvement of radar resolution,the dimension of the high resolution range profile(HRRP)has increased.In order to solve the small sample problem caused by the increase of HRRP dimension,an algorithm based on kernel joint discriminant analysis(KJDA)is proposed.Compared with the traditional feature extraction methods,KJDA possesses stronger discriminative ability in the kernel feature space.K-nearest neighbor(KNN)and kernel support vector machine(KSVM)are applied as feature classifiers to verify the classification effect.Experimental results on the measured aircraft datasets show that KJDA can reduce the dimensionality,and improve target recognition performance. 展开更多
关键词 high RESOLUTION range profile(HRRP) target recognition small SAMPLE problem feature extraction DIMENSION reduction
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部