针对机场跑道异物(Foreign Object Debris,FOD)的小目标特点,提出一种基于改进YOLOv3的FOD目标检测算法。以YOLOv3网络为基础,采用运算复杂度相对更低的Darknet-49作为特征提取网络,并将检测尺度增加至4个,进行多尺度特征融合。使用基...针对机场跑道异物(Foreign Object Debris,FOD)的小目标特点,提出一种基于改进YOLOv3的FOD目标检测算法。以YOLOv3网络为基础,采用运算复杂度相对更低的Darknet-49作为特征提取网络,并将检测尺度增加至4个,进行多尺度特征融合。使用基于马尔科夫链蒙特卡罗采样(Markov Chain Monte Carlo sampling,MCMC)的K-means++算法对标注边界框尺寸信息进行聚类分析。训练时引入GIoU边界框回归损失函数。实验结果表明,改进的YOLOv3目标检测算法在满足实时性要求的情况下,精确率和召回率达到了95.3%和91.1%,与Faster R-CNN相比具有更高的检测速度,与SSD相比具有更高的检测精度,有效解决了原YOLOv3存在的定位精度偏低和漏检问题。展开更多
With the improvement of radar resolution,the dimension of the high resolution range profile(HRRP)has increased.In order to solve the small sample problem caused by the increase of HRRP dimension,an algorithm based on ...With the improvement of radar resolution,the dimension of the high resolution range profile(HRRP)has increased.In order to solve the small sample problem caused by the increase of HRRP dimension,an algorithm based on kernel joint discriminant analysis(KJDA)is proposed.Compared with the traditional feature extraction methods,KJDA possesses stronger discriminative ability in the kernel feature space.K-nearest neighbor(KNN)and kernel support vector machine(KSVM)are applied as feature classifiers to verify the classification effect.Experimental results on the measured aircraft datasets show that KJDA can reduce the dimensionality,and improve target recognition performance.展开更多
文摘针对机场跑道异物(Foreign Object Debris,FOD)的小目标特点,提出一种基于改进YOLOv3的FOD目标检测算法。以YOLOv3网络为基础,采用运算复杂度相对更低的Darknet-49作为特征提取网络,并将检测尺度增加至4个,进行多尺度特征融合。使用基于马尔科夫链蒙特卡罗采样(Markov Chain Monte Carlo sampling,MCMC)的K-means++算法对标注边界框尺寸信息进行聚类分析。训练时引入GIoU边界框回归损失函数。实验结果表明,改进的YOLOv3目标检测算法在满足实时性要求的情况下,精确率和召回率达到了95.3%和91.1%,与Faster R-CNN相比具有更高的检测速度,与SSD相比具有更高的检测精度,有效解决了原YOLOv3存在的定位精度偏低和漏检问题。
基金supported by the National Natural Science Foundation of China(61471191)the Aeronautical Science Foundation of China(20152052026)the Foundation of Graduate Innovation Center in NUAA(kfjj20170313)
文摘With the improvement of radar resolution,the dimension of the high resolution range profile(HRRP)has increased.In order to solve the small sample problem caused by the increase of HRRP dimension,an algorithm based on kernel joint discriminant analysis(KJDA)is proposed.Compared with the traditional feature extraction methods,KJDA possesses stronger discriminative ability in the kernel feature space.K-nearest neighbor(KNN)and kernel support vector machine(KSVM)are applied as feature classifiers to verify the classification effect.Experimental results on the measured aircraft datasets show that KJDA can reduce the dimensionality,and improve target recognition performance.