期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于自适应池化的神经网络的服装图像识别 被引量:11
1
作者 胡聪 屈瑾瑾 +1 位作者 许川佩 朱爱军 《计算机应用》 CSCD 北大核心 2018年第8期2211-2217,共7页
针对传统池化方式不能提取有效特征值的问题,提出根据池化域的尺寸、池化域内的元素值和网络的训练轮数调整池化结果的自适应池化方法,该算法依据插值原理与最大值池化模型构建函数,以特定函数值作为池化结果,然后利用交叉验证进行模型... 针对传统池化方式不能提取有效特征值的问题,提出根据池化域的尺寸、池化域内的元素值和网络的训练轮数调整池化结果的自适应池化方法,该算法依据插值原理与最大值池化模型构建函数,以特定函数值作为池化结果,然后利用交叉验证进行模型对比实验。同时提出了小样本调优法以解决目前依靠经验值在全部数据集上验证选取超参数效率较低的问题。在原始数据集上,按照分层抽样的规则抽取小样本,并基于小样本数据集对已编码的超参数组合循环训练并测试,通过对识别率最高的组合解码确定最优超参数。选用Deep Fashion数据库进行相关实验,结果显示自适应池化模型的识别率达到83%左右,与最大值池化模型相比提高约2.5%。通过小样本选定超参数,并与随机组合超参数在原始数据集上进行对比实验,结果显示小样本调优法选择的超参数在经验值范围内最优,识别结果为86.98%,与随机组合超参数的平均识别率相比提高了约41.4%。自适应池化方法可以扩展到其他的神经网络中,小样本调优法对高效选取神经网络的超参数提供了依据。 展开更多
关键词 卷积神经网络 服装图像 自适应池化 小样本调优 交叉验证
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部