期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于稳定信息的小数据学习方法
1
作者 马宇晴 张湛舸 +1 位作者 刘卫 刘祥龙 《智能安全》 2023年第1期13-26,共14页
爆炸式增长的数据极大地推动了人工智能的进步与发展,在公共、国防安全领域得到了广泛应用,然而在这些安全攸关领域中存在分布特殊、以小概率出现的、具有动态不确定性的非完备小数据,难以利用传统的人工智能算法实现精准预测,从而出现... 爆炸式增长的数据极大地推动了人工智能的进步与发展,在公共、国防安全领域得到了广泛应用,然而在这些安全攸关领域中存在分布特殊、以小概率出现的、具有动态不确定性的非完备小数据,难以利用传统的人工智能算法实现精准预测,从而出现被诱导、误判、偏见、分歧等与人类价值显著背离的潜在风险行为,引发针对智能算法模型应用的安全事件并造成灾难性后果.因此需针对这些小数据设计新型学习范式.本文首先梳理了小数据的概念并将其按照学习难度分为信息缺失、信息偏见、信息对抗三种情况,分析了其不满足常规人工智能算法的三种强假设条件,即独立、同分布、封闭世界假设.其次,系统提出基于稳定信息的小数据学习框架,介绍了稳定信息基于模型输入、模型模块、损失函数的嵌入方式,并给出形式化表达.随后,以因果干预及数理内嵌两种稳定信息为例,介绍了相应嵌入方式的小数据学习方法,并在轨迹预测任务上验证基于稳定信息的小数据学习的有效性.最后,给出未来展望.开展基于稳定信息的小数据学习方法研究,是小数据学习的实现途径之一,可有效缓解复杂环境下传统人工智能算法强假设不成立的学习困境,引导和支持人工智能算法的高效学习和精准预测,推动人工智能技术安全、可靠、可信发展. 展开更多
关键词 小数据学习 稳定信息 因果干预 数理内嵌 智能安全 可信赖人工智能
下载PDF
基于高斯原型网络的小样本逆合成孔径雷达目标识别 被引量:4
2
作者 杨敏佳 白雪茹 +2 位作者 刘士豪 曾磊 周峰 《电子与信息学报》 EI CSCD 北大核心 2022年第10期3566-3573,共8页
针对现有基于深度卷积神经网络(DCNNs)的逆合成孔径雷达(ISAR)目标识别方法在训练样本不足时性能下降甚至失效等问题,该文提出基于高斯原型网络(GPN)的小样本ISAR目标识别方法。该方法通过嵌入网络将ISAR像映射为嵌入向量,进而根据加权... 针对现有基于深度卷积神经网络(DCNNs)的逆合成孔径雷达(ISAR)目标识别方法在训练样本不足时性能下降甚至失效等问题,该文提出基于高斯原型网络(GPN)的小样本ISAR目标识别方法。该方法通过嵌入网络将ISAR像映射为嵌入向量,进而根据加权嵌入向量构建高斯原型,最终根据测试样本到原型的马氏距离预测目标类别。3类飞机目标实测数据的识别结果表明,该方法在小样本条件下可获得更高的平均识别精度。 展开更多
关键词 逆合成孔径雷达 目标识别 深度学习 小样本学习 高斯原型网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部