The existence of an evolving microstructure in a 2.9 vol% fumed silica in paraffin oil and polyisobutylene is demonstrated experimentally and via rheological modeling during steady state and large amplitude oscillator...The existence of an evolving microstructure in a 2.9 vol% fumed silica in paraffin oil and polyisobutylene is demonstrated experimentally and via rheological modeling during steady state and large amplitude oscillatory shear flow. The continuously evolving, rebuilding, and breaking down of the microstructure is shown, and correlated through the rheology experiments, thixo-elastovisco-plastic modeling, and small angle light scattering (SALS). All elements are then connected via a global, stochastic optimization algorithm that will provide parameter estimation with a “best-fit” of the steady state and transient data using the well-known Modified Delaware Thixotropic Model, allowing for the comparison of SALS results with experimental values.展开更多
Spinodal phase separation behavior of poly(methyl methacrylate)/poly(styrene-co-acrylonitrile) (PMMA/SAN) blends was investigated by the time-resolved small angle light scattering (SALS) technique. It was found that t...Spinodal phase separation behavior of poly(methyl methacrylate)/poly(styrene-co-acrylonitrile) (PMMA/SAN) blends was investigated by the time-resolved small angle light scattering (SALS) technique. It was found that the influence of temperature on the scattering intensity evolution followed the time-temperature superposition principle. The relationship between temperature and the relaxation ti me of scattering intensity I(t) can be well described by the Williams-Landel-Ferry (WLF) function.展开更多
文摘The existence of an evolving microstructure in a 2.9 vol% fumed silica in paraffin oil and polyisobutylene is demonstrated experimentally and via rheological modeling during steady state and large amplitude oscillatory shear flow. The continuously evolving, rebuilding, and breaking down of the microstructure is shown, and correlated through the rheology experiments, thixo-elastovisco-plastic modeling, and small angle light scattering (SALS). All elements are then connected via a global, stochastic optimization algorithm that will provide parameter estimation with a “best-fit” of the steady state and transient data using the well-known Modified Delaware Thixotropic Model, allowing for the comparison of SALS results with experimental values.
基金This work was supported by the Special Funds for Major State Basic Research Projects (Grand G1999064800)
文摘Spinodal phase separation behavior of poly(methyl methacrylate)/poly(styrene-co-acrylonitrile) (PMMA/SAN) blends was investigated by the time-resolved small angle light scattering (SALS) technique. It was found that the influence of temperature on the scattering intensity evolution followed the time-temperature superposition principle. The relationship between temperature and the relaxation ti me of scattering intensity I(t) can be well described by the Williams-Landel-Ferry (WLF) function.