The Slit family of axon guidance cues act as repulsive molecules for precise axon pathfinding and neuronal migration during nervous system development through interactions with specific Robo receptors.Although we prev...The Slit family of axon guidance cues act as repulsive molecules for precise axon pathfinding and neuronal migration during nervous system development through interactions with specific Robo receptors.Although we previously reported that Slit1–3 and their receptors Robo1 and Robo2 are highly expressed in the adult mouse peripheral nervous system,how this expression changes after injury has not been well studied.Herein,we constructed a peripheral nerve injury mouse model by transecting the right sciatic nerve.At 14 days after injury,quantitative real-time polymerase chain reaction was used to detect mRNA expression of Slit1–3 and Robo1–2 in L4–5 spinal cord and dorsal root ganglia,as well as the sciatic nerve.Immunohistochemical analysis was performed to examine Slit1–3,Robo1–2,neurofilament heavy chain,F4/80,and vimentin in L4–5 spinal cord,L4 dorsal root ganglia,and the sciatic nerve.Co-expression of Slit1–3 and Robo1–2 in L4 dorsal root ganglia was detected by in situ hybridization.In addition,Slit1–3 and Robo1–2 protein expression in L4–5 spinal cord,L4 dorsal root ganglia,and sciatic nerve were detected by western blot assay.The results showed no significant changes of Slit1–3 or Robo1–2 mRNA expression in the spinal cord within 14 days after injury.In the dorsal root ganglion,Slit1–3 and Robo1–2 mRNA expression were initially downregulated within 4 days after injury;however,Robo1–2 mRNA expression returned to the control level,while Slit1–3 mRNA expression remained upregulated during regeneration from 4–14 days after injury.In the sciatic nerve,Slit1–3 and their receptors Robo1–2 were all expressed in the proximal nerve stump;however,Slit1,Slit2,and Robo2 were barely detectable in the nerve bridge and distal nerve stump within 14 days after injury.Slit3 was highly ex-pressed in macrophages surrounding the nerve bridge and slightly downregulated in the distal nerve stump within 14 days after injury.Robo1 was upregulated in vimentin-positive cells and migrating Schwann展开更多
目的 :探讨脊神经前根损伤后,大鼠脊髓组织中Slit1的表达变化,为进一步研究Slit1在神经再生中的作用提供依据。方法:应用2月龄SD大鼠共100只,体重250±20g,其中80只SD大鼠实施左侧L5及L6脊神经前根切断,分别在伤后1d、3d、7d、14...目的 :探讨脊神经前根损伤后,大鼠脊髓组织中Slit1的表达变化,为进一步研究Slit1在神经再生中的作用提供依据。方法:应用2月龄SD大鼠共100只,体重250±20g,其中80只SD大鼠实施左侧L5及L6脊神经前根切断,分别在伤后1d、3d、7d、14d时处死(每个时间点20只),取L5~L6脊髓节段,标记左右;左侧半L5~L6脊髓节段为实验组;右侧半为自身对照组。假手术大鼠(20只)实施麻醉及暴露L5及L6脊神经手术,未行L5及L6脊神经前根切断术,取其L5~L6脊髓节段为空白对照组。采用免疫组化、Western blotting及RT-PCR法检测大鼠脊髓组织中Slit1的变化。结果:脊神经前根切断后1d、3d、7d、14d,实验组中Slit1阳性细胞数分别为5.78±1.53、15.85±2.65、23.93±1.53、8.78±1.78;自身对照组中分别为2.31±1.63、2.57±1.89、3.20±2.16、3.02±2.15。各时间点实验组中Slit1阳性细胞数显著高于空白对照组(2.89±1.26)及自身对照组(P〈0.05)。Western blotting示脊神经前根切断后1d、3d、7d、14d,实验组Slit1相对表达量分别为0.326±0.09、0.448±0.05、0.638±0.07、0.304±0.07;自身对照组分别为0.038±0.02、0.038±0.01、0.035±0.02、0.046±0.03。各时间点实验组Slit1相对表达量与空白对照组(0.038±0.03)及自身对照组比较,差异有显著性(P〈0.05)。RT-PCR示脊神经前根切断后1d、3d、7d、14d,实验组Slit1 m RNA相对量分别为0.380±0.03、0.425±0.04、0.768±0.05、0.605±0.04;自身对照组分别为0.210±0.04、0.265±0.03、0.292±0.02、0.261±0.02。各时间点实验组Slit1 m RNA相对量与空白对照组(0.231±0.03)及自身对照组比较,差异有显著性(P〈0.05)。结论 :脊神经前根切断后,同侧脊髓灰质前角内Slit1的表达显著增加。展开更多
目的观察胶质细胞Slit1对脊髓背根节(DRG)神经元突起生长的影响。方法构建大鼠Slit1siRNA,转染至大鼠原代DRG卫星胶质细胞。利用实时荧光定量-聚合酶链反应(RT-PCR)、Western blot技术检测Slit1 m RNA和蛋白的表达情况;将siRNA-Slit1转...目的观察胶质细胞Slit1对脊髓背根节(DRG)神经元突起生长的影响。方法构建大鼠Slit1siRNA,转染至大鼠原代DRG卫星胶质细胞。利用实时荧光定量-聚合酶链反应(RT-PCR)、Western blot技术检测Slit1 m RNA和蛋白的表达情况;将siRNA-Slit1转染成功的胶质细胞与大鼠原代DRG神经元共培养48 h,显微镜下观察神经元突起生长情况。结果 (1)与阴性对照组比较,siRNA-Slit1组胶质细胞Slit1 m RNA的表达量明显降低,差异具有统计学意义(P<0.05);空白对照组与阴性对照组比较差异无统计学意义(P>0.05);(2)siRNA-Slit1组Slit1蛋白的表达量明显低于阴性对照组,差异具有显著统计学意义(P<0.01),而空白对照组与阴性对照组间比较差异无统计学意义(P>0.05);(3)siRNA-Slit1组神经元突起长度明显短于阴性对照组,差异具有显著统计学意义(P<0.01)。结论 Slit1是诱导神经元突起生长的重要导向分子,可促进离体DRG神经元突起的生长。展开更多
目的:探讨电针对大鼠坐骨神经损伤后神经导向因子Slit1及其mRNA表达的影响。方法:将72只SD大鼠按随机数字表法分为正常组、模型组和治疗组,每组各24只。建立大鼠右坐骨神经横断后即刻端对端缝合模型。治疗组取"环跳"、"...目的:探讨电针对大鼠坐骨神经损伤后神经导向因子Slit1及其mRNA表达的影响。方法:将72只SD大鼠按随机数字表法分为正常组、模型组和治疗组,每组各24只。建立大鼠右坐骨神经横断后即刻端对端缝合模型。治疗组取"环跳"、"足三里"电针治疗,每日1次,7 d 1个疗程,连续3个疗程。每个疗程结束后以免疫组化法、RT-PCR法分别检测坐骨神经和相应脊髓段(L4-L6)Slit1及其mRNA的表达变化。结果:治疗组Slit1及其mRNA在第1疗程后达到高峰之后逐渐降低,显著高于模型组(P<0.01),且治疗组与模型组始终都显著高于正常组(P<0.01)。结论:电针治疗能明显增强损伤坐骨神经和相应脊髓段(L4-L6)中Slit1及其mRNA的表达,促进周围神经损伤再生修复。展开更多
基金supported by the National Natural Science Foundation of China,No.81371353(to XPD)
文摘The Slit family of axon guidance cues act as repulsive molecules for precise axon pathfinding and neuronal migration during nervous system development through interactions with specific Robo receptors.Although we previously reported that Slit1–3 and their receptors Robo1 and Robo2 are highly expressed in the adult mouse peripheral nervous system,how this expression changes after injury has not been well studied.Herein,we constructed a peripheral nerve injury mouse model by transecting the right sciatic nerve.At 14 days after injury,quantitative real-time polymerase chain reaction was used to detect mRNA expression of Slit1–3 and Robo1–2 in L4–5 spinal cord and dorsal root ganglia,as well as the sciatic nerve.Immunohistochemical analysis was performed to examine Slit1–3,Robo1–2,neurofilament heavy chain,F4/80,and vimentin in L4–5 spinal cord,L4 dorsal root ganglia,and the sciatic nerve.Co-expression of Slit1–3 and Robo1–2 in L4 dorsal root ganglia was detected by in situ hybridization.In addition,Slit1–3 and Robo1–2 protein expression in L4–5 spinal cord,L4 dorsal root ganglia,and sciatic nerve were detected by western blot assay.The results showed no significant changes of Slit1–3 or Robo1–2 mRNA expression in the spinal cord within 14 days after injury.In the dorsal root ganglion,Slit1–3 and Robo1–2 mRNA expression were initially downregulated within 4 days after injury;however,Robo1–2 mRNA expression returned to the control level,while Slit1–3 mRNA expression remained upregulated during regeneration from 4–14 days after injury.In the sciatic nerve,Slit1–3 and their receptors Robo1–2 were all expressed in the proximal nerve stump;however,Slit1,Slit2,and Robo2 were barely detectable in the nerve bridge and distal nerve stump within 14 days after injury.Slit3 was highly ex-pressed in macrophages surrounding the nerve bridge and slightly downregulated in the distal nerve stump within 14 days after injury.Robo1 was upregulated in vimentin-positive cells and migrating Schwann
文摘目的 :探讨脊神经前根损伤后,大鼠脊髓组织中Slit1的表达变化,为进一步研究Slit1在神经再生中的作用提供依据。方法:应用2月龄SD大鼠共100只,体重250±20g,其中80只SD大鼠实施左侧L5及L6脊神经前根切断,分别在伤后1d、3d、7d、14d时处死(每个时间点20只),取L5~L6脊髓节段,标记左右;左侧半L5~L6脊髓节段为实验组;右侧半为自身对照组。假手术大鼠(20只)实施麻醉及暴露L5及L6脊神经手术,未行L5及L6脊神经前根切断术,取其L5~L6脊髓节段为空白对照组。采用免疫组化、Western blotting及RT-PCR法检测大鼠脊髓组织中Slit1的变化。结果:脊神经前根切断后1d、3d、7d、14d,实验组中Slit1阳性细胞数分别为5.78±1.53、15.85±2.65、23.93±1.53、8.78±1.78;自身对照组中分别为2.31±1.63、2.57±1.89、3.20±2.16、3.02±2.15。各时间点实验组中Slit1阳性细胞数显著高于空白对照组(2.89±1.26)及自身对照组(P〈0.05)。Western blotting示脊神经前根切断后1d、3d、7d、14d,实验组Slit1相对表达量分别为0.326±0.09、0.448±0.05、0.638±0.07、0.304±0.07;自身对照组分别为0.038±0.02、0.038±0.01、0.035±0.02、0.046±0.03。各时间点实验组Slit1相对表达量与空白对照组(0.038±0.03)及自身对照组比较,差异有显著性(P〈0.05)。RT-PCR示脊神经前根切断后1d、3d、7d、14d,实验组Slit1 m RNA相对量分别为0.380±0.03、0.425±0.04、0.768±0.05、0.605±0.04;自身对照组分别为0.210±0.04、0.265±0.03、0.292±0.02、0.261±0.02。各时间点实验组Slit1 m RNA相对量与空白对照组(0.231±0.03)及自身对照组比较,差异有显著性(P〈0.05)。结论 :脊神经前根切断后,同侧脊髓灰质前角内Slit1的表达显著增加。
文摘目的观察胶质细胞Slit1对脊髓背根节(DRG)神经元突起生长的影响。方法构建大鼠Slit1siRNA,转染至大鼠原代DRG卫星胶质细胞。利用实时荧光定量-聚合酶链反应(RT-PCR)、Western blot技术检测Slit1 m RNA和蛋白的表达情况;将siRNA-Slit1转染成功的胶质细胞与大鼠原代DRG神经元共培养48 h,显微镜下观察神经元突起生长情况。结果 (1)与阴性对照组比较,siRNA-Slit1组胶质细胞Slit1 m RNA的表达量明显降低,差异具有统计学意义(P<0.05);空白对照组与阴性对照组比较差异无统计学意义(P>0.05);(2)siRNA-Slit1组Slit1蛋白的表达量明显低于阴性对照组,差异具有显著统计学意义(P<0.01),而空白对照组与阴性对照组间比较差异无统计学意义(P>0.05);(3)siRNA-Slit1组神经元突起长度明显短于阴性对照组,差异具有显著统计学意义(P<0.01)。结论 Slit1是诱导神经元突起生长的重要导向分子,可促进离体DRG神经元突起的生长。
文摘目的:探讨电针对大鼠坐骨神经损伤后神经导向因子Slit1及其mRNA表达的影响。方法:将72只SD大鼠按随机数字表法分为正常组、模型组和治疗组,每组各24只。建立大鼠右坐骨神经横断后即刻端对端缝合模型。治疗组取"环跳"、"足三里"电针治疗,每日1次,7 d 1个疗程,连续3个疗程。每个疗程结束后以免疫组化法、RT-PCR法分别检测坐骨神经和相应脊髓段(L4-L6)Slit1及其mRNA的表达变化。结果:治疗组Slit1及其mRNA在第1疗程后达到高峰之后逐渐降低,显著高于模型组(P<0.01),且治疗组与模型组始终都显著高于正常组(P<0.01)。结论:电针治疗能明显增强损伤坐骨神经和相应脊髓段(L4-L6)中Slit1及其mRNA的表达,促进周围神经损伤再生修复。