This paper presents a new coding scheme called semi-low-density parity-check convolutional code(semi-LDPC-CC),whose parity-check matrix consists of both sparse and dense sub-matrices,a feature distinguished from the c...This paper presents a new coding scheme called semi-low-density parity-check convolutional code(semi-LDPC-CC),whose parity-check matrix consists of both sparse and dense sub-matrices,a feature distinguished from the conventional LDPC-CCs.We propose sliding-window list(SWL)decoding algorithms with a fixed window size of two,resulting in a low decoding latency but a competitive error-correcting performance.The performance can be predicted by upper bounds derived from the first event error probability and by genie-aided(GA)lower bounds estimated from the underlying LDPC block codes(LDPC-BCs),while the complexity can be reduced by truncating the list with a threshold on the difference between the soft metrics in the serial decoding implementation.Numerical results are presented to validate our analysis and demonstrate the performance advantage of the semi-LDPC-CCs over the conventional LDPC-CCs.展开更多
In free-space optical(FSO) communications, the performance of the communication systems is severely degraded by atmospheric turbulence. Channel coding and diversity techniques are commonly used to combat channel fadin...In free-space optical(FSO) communications, the performance of the communication systems is severely degraded by atmospheric turbulence. Channel coding and diversity techniques are commonly used to combat channel fading induced by atmospheric turbulence. In this paper, we present the generalized block Markov superposition transmission(GBMST) of repetition codes to improve time diversity. In the GBMST scheme, information sub-blocks are transmitted in the block Markov superposition manner, with possibly different transmission memories. Based on analyzing an equivalent system, a lower bound on the bit-error-rate(BER) of the proposed scheme is presented. Simulation results demonstrate that, under a wide range of turbulence conditions, the proposed scheme improves diversity gain with only a slight reduction of transmission rate. In particular, with encoding memory sequence(0, 0, 8) and transmission rate 1/3, a diversity order of eleven is achieved under moderate turbulence conditions. Numerical results also show that, the GBMST systems with appropriate settings can approach the derived lower bound, implying that full diversity is achievable.展开更多
基金This work was supported by the National Key R&D Program of China under Grant 2020YFB1807100the NSF of China under Grant 61971454 and Grant 62071498 and Guangdong Basic and Applied Basic Research Foundation under Grant 2020A1515010687.
文摘This paper presents a new coding scheme called semi-low-density parity-check convolutional code(semi-LDPC-CC),whose parity-check matrix consists of both sparse and dense sub-matrices,a feature distinguished from the conventional LDPC-CCs.We propose sliding-window list(SWL)decoding algorithms with a fixed window size of two,resulting in a low decoding latency but a competitive error-correcting performance.The performance can be predicted by upper bounds derived from the first event error probability and by genie-aided(GA)lower bounds estimated from the underlying LDPC block codes(LDPC-BCs),while the complexity can be reduced by truncating the list with a threshold on the difference between the soft metrics in the serial decoding implementation.Numerical results are presented to validate our analysis and demonstrate the performance advantage of the semi-LDPC-CCs over the conventional LDPC-CCs.
基金partially supported by the Basic Research Project of Guangdong Provincial Natural Science Foundation (No.2016A030308008)the National Natural Science Foundation of China (No.91438101 and No.61501206)the National Basic Research Program of China (973 Program) (No.2012CB316100)
文摘In free-space optical(FSO) communications, the performance of the communication systems is severely degraded by atmospheric turbulence. Channel coding and diversity techniques are commonly used to combat channel fading induced by atmospheric turbulence. In this paper, we present the generalized block Markov superposition transmission(GBMST) of repetition codes to improve time diversity. In the GBMST scheme, information sub-blocks are transmitted in the block Markov superposition manner, with possibly different transmission memories. Based on analyzing an equivalent system, a lower bound on the bit-error-rate(BER) of the proposed scheme is presented. Simulation results demonstrate that, under a wide range of turbulence conditions, the proposed scheme improves diversity gain with only a slight reduction of transmission rate. In particular, with encoding memory sequence(0, 0, 8) and transmission rate 1/3, a diversity order of eleven is achieved under moderate turbulence conditions. Numerical results also show that, the GBMST systems with appropriate settings can approach the derived lower bound, implying that full diversity is achievable.