The carbothermic reduction of vanadium titanomagnetite concentrate(VTC)with the assistance of Na_(2)CO_(3)was conducted in an argon atmosphere between 1073 and 1473 K.X-ray diffraction and scanning electron microscopy...The carbothermic reduction of vanadium titanomagnetite concentrate(VTC)with the assistance of Na_(2)CO_(3)was conducted in an argon atmosphere between 1073 and 1473 K.X-ray diffraction and scanning electron microscopy were used to investigate the phase transformations during the reaction.By investigating the reaction between VTC and Na_(2)CO_(3),it was concluded that molten Na_(2)CO_(3)broke the structure of titanomagnetite by combining with the acidic oxides(Fe_(2)O_(3),TiO_(2),Al_(2)O_(3),and SiO_(2))to form a Na-rich melt and release FeO and MgO.Therefore,Na_(2)CO_(3)accelerated the reduction rate.In addition,adding Na_(2)CO_(3)also benefited the agglomeration of iron particles and the slag–metal separation by decreasing the viscosity of the slag.Thus,Na_(2)CO_(3)assisted carbothermic reduction is a promising method for treating VTC at low temperatures.展开更多
High ferrotitanium prepared directly by the thermite method has a disadvantageously high O content(≥10 wt%)because of the short slag-metal separation time.In this study,CaO and CaF2 are added to the melt to improve t...High ferrotitanium prepared directly by the thermite method has a disadvantageously high O content(≥10 wt%)because of the short slag-metal separation time.In this study,CaO and CaF2 are added to the melt to improve the basicity of the slag and melt separation under heat preservation is performed to strengthen slag-metal separation.The thermodynamics of the step-by-step reduction process of TiO2 in the Ti-Al-Fe-Si-O system whose composition is close to the alloy after melt separation were calculated.Samples of alloys and slags before and after melt separation were systematically analyzed.The result indicates that the reaction that TiO is reduced by Al to Ti is the limited step in the reduction process of TiO2.The O content of the alloys slightly decreases with temperature from 1873 to 2023 K,which agrees with the changes in the law of deoxidation limit.It is mainly attributed to the movement of chemical reactions in the alloy melt at different temperatures and slag-metal interfacial reaction.The addition of Al2 O3-CaO-CaF2 slag and high temperature promote the removal of Al2 O3 and titanium suboxides.The minimum contents of O and Al in the alloy reach 1.84 wt% and 3.26 wt%,respectively.展开更多
Slag/metal separation process of the highly reduced oolitic high-phosphorus iron ore fines was investigated. Samples were prepared using the reduced ore fines (metallization rate: 88%) and powder additives of CaO a...Slag/metal separation process of the highly reduced oolitic high-phosphorus iron ore fines was investigated. Samples were prepared using the reduced ore fines (metallization rate: 88%) and powder additives of CaO and Na2CO3. Slag/metal separation behavior tests were conducted using a quenching method and the obtained metal parts were subjected to direct observation as well as microstructure examination with SEM and EDS; iron recovery and phosphorus distribution tests were conducted using a Si-Mo high temperature furnace and the obtained metal parts were examined by ICP-AES analysis and mass measurement. Thermodynamic calculation using coexistence theory of slag structure was also performed. Results show that temperature for slag/metal separation must be higher than 1823 K and a satisfying slag/metal separation of the highly reduced ore fines needs at least 4 min; phosphorus con- tent of hot metal is mainly determined by thermodynamics; temperature of 1823-1873 K and Na2CO3 mixing ratio of about 3 % are adequate for controlling phosphorus content to be less than 0.3 mass% in hot metal; temperature, time and Na2CO3 mixing ratio do not have significant effect on iron recovery, and iron recovery rate could be higher than 80% as long as a good slag/metal separation result is obtained.展开更多
基金financially supported by the National Key R&D Program of China(No.2018YFC1900500)the National Natural Science Foundation of China(Nos.21908231,51774260,51804289,and 51904286)+2 种基金the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences(No.QYZDJ-SSW-JSC021)the CAS Interdisciplinary Innovation Teamthe Special Project for Transformation of Major Technological Achievements in Hebei Province,China(No.19044012Z)。
文摘The carbothermic reduction of vanadium titanomagnetite concentrate(VTC)with the assistance of Na_(2)CO_(3)was conducted in an argon atmosphere between 1073 and 1473 K.X-ray diffraction and scanning electron microscopy were used to investigate the phase transformations during the reaction.By investigating the reaction between VTC and Na_(2)CO_(3),it was concluded that molten Na_(2)CO_(3)broke the structure of titanomagnetite by combining with the acidic oxides(Fe_(2)O_(3),TiO_(2),Al_(2)O_(3),and SiO_(2))to form a Na-rich melt and release FeO and MgO.Therefore,Na_(2)CO_(3)accelerated the reduction rate.In addition,adding Na_(2)CO_(3)also benefited the agglomeration of iron particles and the slag–metal separation by decreasing the viscosity of the slag.Thus,Na_(2)CO_(3)assisted carbothermic reduction is a promising method for treating VTC at low temperatures.
基金financially supported by the National Natural Science Foundation of China (Nos. 51422403, 51774078 and U1508217)the Fundamental Research Funds for the Central Universities (No. N162505002)
文摘High ferrotitanium prepared directly by the thermite method has a disadvantageously high O content(≥10 wt%)because of the short slag-metal separation time.In this study,CaO and CaF2 are added to the melt to improve the basicity of the slag and melt separation under heat preservation is performed to strengthen slag-metal separation.The thermodynamics of the step-by-step reduction process of TiO2 in the Ti-Al-Fe-Si-O system whose composition is close to the alloy after melt separation were calculated.Samples of alloys and slags before and after melt separation were systematically analyzed.The result indicates that the reaction that TiO is reduced by Al to Ti is the limited step in the reduction process of TiO2.The O content of the alloys slightly decreases with temperature from 1873 to 2023 K,which agrees with the changes in the law of deoxidation limit.It is mainly attributed to the movement of chemical reactions in the alloy melt at different temperatures and slag-metal interfacial reaction.The addition of Al2 O3-CaO-CaF2 slag and high temperature promote the removal of Al2 O3 and titanium suboxides.The minimum contents of O and Al in the alloy reach 1.84 wt% and 3.26 wt%,respectively.
基金Item Sponsored by National Natural Science Foundation of China(51144010)Research Funds from State Key Laboratory of Advanced Metallurgy USTB of China(416020020)
文摘Slag/metal separation process of the highly reduced oolitic high-phosphorus iron ore fines was investigated. Samples were prepared using the reduced ore fines (metallization rate: 88%) and powder additives of CaO and Na2CO3. Slag/metal separation behavior tests were conducted using a quenching method and the obtained metal parts were subjected to direct observation as well as microstructure examination with SEM and EDS; iron recovery and phosphorus distribution tests were conducted using a Si-Mo high temperature furnace and the obtained metal parts were examined by ICP-AES analysis and mass measurement. Thermodynamic calculation using coexistence theory of slag structure was also performed. Results show that temperature for slag/metal separation must be higher than 1823 K and a satisfying slag/metal separation of the highly reduced ore fines needs at least 4 min; phosphorus con- tent of hot metal is mainly determined by thermodynamics; temperature of 1823-1873 K and Na2CO3 mixing ratio of about 3 % are adequate for controlling phosphorus content to be less than 0.3 mass% in hot metal; temperature, time and Na2CO3 mixing ratio do not have significant effect on iron recovery, and iron recovery rate could be higher than 80% as long as a good slag/metal separation result is obtained.