The distribution and source of the solvent-extractable organic and inorganic components in PM2.5 (aerodynamics equivalent diameter below 2.5 microns), and PM10 (aerodynamics equivalent diameter below 10 microns) f...The distribution and source of the solvent-extractable organic and inorganic components in PM2.5 (aerodynamics equivalent diameter below 2.5 microns), and PM10 (aerodynamics equivalent diameter below 10 microns) fractions of airborne particles were studied weekly from September 2006 to August 2007 in Beijing. The extracted organic and inorganic compounds identified in both particle size ranges consisted of n-alkanes, PAHs (polycyclic aromatic hydrocarbons), fatty acids and water soluble ions. The potential emission sources of these organic compounds were reconciled by combining the values of n-alkane carbon preference index (CPI), %waxCn, selected diagnostic ratios of PAHs and principal component analysis in both size ranges. The mean cumulative concentrations of n-alkanes reached 1128.65 ng/m3 in Beijing, 74% of which (i.e., 831.7 ng/m3) was in the PM2.5 fraction, PAHs reached 136.45 ng/m3 (113.44 ng/m3 or 83% in PM2.5), and fatty acids reached 436.99 ng/m3 (324.41 ng/m3 or 74% in PM2.5), which resulted in overall enrichment in the fine particles. The average concentrations of SO42-, NO3-, and NH4+ were 21.3 ± 15.2, 6.1 ±1.8, 12.5 ± 6.1 μg/m3 in PM2.5, and 25.8±15.5, 8.9± 2.6, 16.9±9.5 μg/m3 in PM10, respectively. These three secondary ions primarily existed as ammonium sulfate ((NH4)2SO4), ammonium bisulfate (NH4HSO4) and ammonium nitrate (NH4NO3). The characteristic ratios of PAHs revealed that the primary sources of PAHs were coal combustion, followed by gasoline combustion. The ratios of stearic/palmitic acid indicated the major contribution of vehicle emissions to fatty acids in airborne particles. The major alkane sources were biogenic sources and fossil fuel combustion. The major sources of PAHs were vehicular emission and coal combustion.展开更多
As is well known to mineral processing scientists and engineers, fine and ultrafine particles are difficult to float mainly due to the low bubble-particle collision efficiencies. Though many efforts have been made to ...As is well known to mineral processing scientists and engineers, fine and ultrafine particles are difficult to float mainly due to the low bubble-particle collision efficiencies. Though many efforts have been made to improve flotation performance of fine and ultrafine particles, there is still much more to be done. In this paper, the effects of nano-microbubbles (nanobuhbles and microbubbles) on the flotation of fine (-38 + 14.36 μm) and ultrafine (-14.36 + 5μm) chalcopyrite particles were investigated in a laboratory scale Denver flotation cell. Nano-microbubbles were generated using a specially-designed nano- microbubble generator based on the cavitation phenomenon in Venturi tubes. In order to better under- stand the mechanisms of nano-microbubble enhanced froth flotation of fine and ultrafine chalcopyrite particles, the nano-microbubble size distribution, stability and the effect of frother concentration on nano- bubble size were also studied by a laser diffraction method. Comparative flotation tests were performed in the presence and absence of nano-microbubbles to evaluate their impact on the fine and ultrafine chalcopyrite particle flotation recovery. According to the results, the mean size of nano-microbubbles increased over time, and decreased with increase of frother concentration. The laboratory-scale flotation test results indicated that flotation recovery of chalcopyrite fine and ultrafine particles increased by approximately 16-21% in the presence of nano-microbubbles, depending on operating conditions of the process. The presence of nano-microbubbles increased the recovery of ultrafine particles (-14.36 + 5 μm) more than that of fine particles (-38 + 14.36 μm). Another major advantage is that the use of nano-microbubbles reduced the collector and frother consumptions by up to 75% and 50%, respectively.展开更多
The toughness of ferritic steels is influenced by the grain size distribution, second phase, precipitates and coarse inclusions. In this work an examination of the effect of coarse TiN particles (〉0.5 μm) and ferr...The toughness of ferritic steels is influenced by the grain size distribution, second phase, precipitates and coarse inclusions. In this work an examination of the effect of coarse TiN particles (〉0.5 μm) and ferrite grain size on the Charpy impact transition temperature in high strength low alloyed steels has been carried out. Steels with high Ti content (up to 0.045 wt%), have been heat-treated and furnace cooled to obtain a ferrite-pearlite microstructure with different ferrite grain sizes. Coarse TiN particle size and ferrite grain size distributions have been measured and Charpy impact testing has been carried out. Scanning electron microscopy (SEM) analysis has been used to measure the grain boundary carbide thickness and to determine if the coarse TiN particles are acting as cleavage initiation sites by fractographic analysis. The Charpy ductile-brittle transition temperatures (DBTT) have been predicted using standard literature equations, and compared to the measured values. The relationship between the ferrite grain size and coarse TiN particle size and number density in terms of whether the coarse TiN particles act as effective cleavage initiation sites is discussed in this paper.展开更多
This paper presents experimental and computational studies on the flow behavior of a gas-solid fluidized bed with disparately sized binary particle mixtures. The mixing/segregation behavior and segregation efficiency ...This paper presents experimental and computational studies on the flow behavior of a gas-solid fluidized bed with disparately sized binary particle mixtures. The mixing/segregation behavior and segregation efficiency of the small and large particles are investigated experimentally. Particle composition and operating conditions that influence the fluidization behavior of mixing/segregation are examined. Based on the granular kinetics theory, a multi-fluid CFD model has been developed and verified against the experimental results. The simulation results are in reasonable agreement with experimental data. The results showed that the smaller particles are found near the bed surface while the larger particles tend to settle down to the bed bottom in turbulent fluidized bed. However, complete segregation of the binary particles does not occur in the gas velocity range of 0.695-0.904 m/s. Segregation efficiency increases with increasing gas velocity and mean residence time of the binary particles, but decreases with increasing the small particle concentration. The calculated results also show that the small particles move downward in the wall region and upward in the core. Due to the effect of large particles on the movement of small particles, the small particles present a more turbulent velocity profile in the dense phase than that in the dilute phase.展开更多
Microstructure evolution and texture development and their effects on mechanical properties of a Mg-Gd-Y-Zr alloy during equal channel angular pressing(ECAP) were investigated.It is found that the microstructure is ...Microstructure evolution and texture development and their effects on mechanical properties of a Mg-Gd-Y-Zr alloy during equal channel angular pressing(ECAP) were investigated.It is found that the microstructure is still inhomogeneous after four passes,and two zones,namely the fine grain zone(FGZ) and the coarse grain zone(CGZ) are formed.The grain refinement occurs mainly by particle-stimulated nucleation(PSN) mechanism,which led to a more random texture after four passes of ECAP.In the ECAP-processed alloy,the strength did not increase while the ductility was enhanced dramatically compared with the as-received condition.The change of ductility of this alloy was discussed in terms of texture and second phase particles.展开更多
The quantification of phosphorus(P) in bulk soil and P distribution in different size fractions of water-stable aggregates(WSAs)are important for assessing potential P loss through runoff. We evaluated available and t...The quantification of phosphorus(P) in bulk soil and P distribution in different size fractions of water-stable aggregates(WSAs)are important for assessing potential P loss through runoff. We evaluated available and total P distribution within WSAs of a sitty clay to clay soil in a long-term fertility experiment of a rice-wheat cropping system in India. Surface soil samples were collected from seven plots amended with NPK fertilizers in combination with or without organic amendments, farmyard manure(FYM), green manure(GM), and paddy straw(PS). The plot with no NPK fertilizers or organic amendments was set as a control. The soil samples were separated by wet sieving into four soil aggregate size fractions: large macroaggregates(> 2.0 mm), small macroaggregates(0.25–2.0 mm), fine microaggregates(0.05–0.25 mm), and a silt + clay-sized fraction(< 0.05 mm). Structural indices were higher in the soil receiving organic amendments than in the soil receiving inorganic fertilizer alone. Organically amended soil had a higher proportion of stable macroaggregates than the control and the soil receiving inorganic fertilizer alone, which were rich in microaggregates. Total and available P contents within WSAs were inversely related to the aggregate size, irrespective of treatment. The distribution of available and total P in the soil aggregate size fraction was as follows: silt + clay-size fraction > small macroaggregates > fine microaggregates> large macroaggregates. Within a size class, aggregate-associated available and total P contents in the organically amended soil were in the following order: FYM > PS ≥ GM. The available P content of the microaggregates(< 0.25 mm) was 8-to 10-times higher than that of the macroaggregates(> 0.25 mm), and the total P content of the microaggregates was 4-to 5-times higher than that of the macroaggregates. Cultivation without organic amendments resulted in more microaggregates that could be checked by the application of organic amendments such as FYM and GM, which increased the proport展开更多
The coarsening behavior of γ particles in a nickel-base superalloy FGH95 was investigated by means of experimental observations and growth kinetics calculations. The results show that when aging at 1000,1080 and 1140...The coarsening behavior of γ particles in a nickel-base superalloy FGH95 was investigated by means of experimental observations and growth kinetics calculations. The results show that when aging at 1000,1080 and 1140°C for different times,the relation of average particle size to time obeys the cube law ( a /2)3= kt,where k is 15.49 × 103,77.5 × 103 and 230.04 × 103 nm3/min,respectively. The particle size distributions are better fit to the LSW theoretical distributions when aging at 1000°C within 1440 min....展开更多
基金supported by the Science and Technology Project of Beijing (No. D09040903670902)the Chinese Academy of Sciences for Key Topics in Innovation Engineering (No. KZCX2-YW-Q02-03)the Basic Research and Development Program (973) of China (No.2007CB407303)
文摘The distribution and source of the solvent-extractable organic and inorganic components in PM2.5 (aerodynamics equivalent diameter below 2.5 microns), and PM10 (aerodynamics equivalent diameter below 10 microns) fractions of airborne particles were studied weekly from September 2006 to August 2007 in Beijing. The extracted organic and inorganic compounds identified in both particle size ranges consisted of n-alkanes, PAHs (polycyclic aromatic hydrocarbons), fatty acids and water soluble ions. The potential emission sources of these organic compounds were reconciled by combining the values of n-alkane carbon preference index (CPI), %waxCn, selected diagnostic ratios of PAHs and principal component analysis in both size ranges. The mean cumulative concentrations of n-alkanes reached 1128.65 ng/m3 in Beijing, 74% of which (i.e., 831.7 ng/m3) was in the PM2.5 fraction, PAHs reached 136.45 ng/m3 (113.44 ng/m3 or 83% in PM2.5), and fatty acids reached 436.99 ng/m3 (324.41 ng/m3 or 74% in PM2.5), which resulted in overall enrichment in the fine particles. The average concentrations of SO42-, NO3-, and NH4+ were 21.3 ± 15.2, 6.1 ±1.8, 12.5 ± 6.1 μg/m3 in PM2.5, and 25.8±15.5, 8.9± 2.6, 16.9±9.5 μg/m3 in PM10, respectively. These three secondary ions primarily existed as ammonium sulfate ((NH4)2SO4), ammonium bisulfate (NH4HSO4) and ammonium nitrate (NH4NO3). The characteristic ratios of PAHs revealed that the primary sources of PAHs were coal combustion, followed by gasoline combustion. The ratios of stearic/palmitic acid indicated the major contribution of vehicle emissions to fatty acids in airborne particles. The major alkane sources were biogenic sources and fossil fuel combustion. The major sources of PAHs were vehicular emission and coal combustion.
基金the Tarbiat Modares University (TMU), the Iran Mineral Processing Research Center (IMPRC) and the IMIDRO for the technical assistance and financial support
文摘As is well known to mineral processing scientists and engineers, fine and ultrafine particles are difficult to float mainly due to the low bubble-particle collision efficiencies. Though many efforts have been made to improve flotation performance of fine and ultrafine particles, there is still much more to be done. In this paper, the effects of nano-microbubbles (nanobuhbles and microbubbles) on the flotation of fine (-38 + 14.36 μm) and ultrafine (-14.36 + 5μm) chalcopyrite particles were investigated in a laboratory scale Denver flotation cell. Nano-microbubbles were generated using a specially-designed nano- microbubble generator based on the cavitation phenomenon in Venturi tubes. In order to better under- stand the mechanisms of nano-microbubble enhanced froth flotation of fine and ultrafine chalcopyrite particles, the nano-microbubble size distribution, stability and the effect of frother concentration on nano- bubble size were also studied by a laser diffraction method. Comparative flotation tests were performed in the presence and absence of nano-microbubbles to evaluate their impact on the fine and ultrafine chalcopyrite particle flotation recovery. According to the results, the mean size of nano-microbubbles increased over time, and decreased with increase of frother concentration. The laboratory-scale flotation test results indicated that flotation recovery of chalcopyrite fine and ultrafine particles increased by approximately 16-21% in the presence of nano-microbubbles, depending on operating conditions of the process. The presence of nano-microbubbles increased the recovery of ultrafine particles (-14.36 + 5 μm) more than that of fine particles (-38 + 14.36 μm). Another major advantage is that the use of nano-microbubbles reduced the collector and frother consumptions by up to 75% and 50%, respectively.
文摘The toughness of ferritic steels is influenced by the grain size distribution, second phase, precipitates and coarse inclusions. In this work an examination of the effect of coarse TiN particles (〉0.5 μm) and ferrite grain size on the Charpy impact transition temperature in high strength low alloyed steels has been carried out. Steels with high Ti content (up to 0.045 wt%), have been heat-treated and furnace cooled to obtain a ferrite-pearlite microstructure with different ferrite grain sizes. Coarse TiN particle size and ferrite grain size distributions have been measured and Charpy impact testing has been carried out. Scanning electron microscopy (SEM) analysis has been used to measure the grain boundary carbide thickness and to determine if the coarse TiN particles are acting as cleavage initiation sites by fractographic analysis. The Charpy ductile-brittle transition temperatures (DBTT) have been predicted using standard literature equations, and compared to the measured values. The relationship between the ferrite grain size and coarse TiN particle size and number density in terms of whether the coarse TiN particles act as effective cleavage initiation sites is discussed in this paper.
基金The authors acknowledge support by the National Natural Science Foundation of China through the programs “Multiple scale analysis and scaling-up of direct coupled dual gas-solid fiuidized reaction systems” (Grant No. 20490202); “Fundamental Research on the Chemical Engineering of Heavy Oil Staged Separation” (Grant No. 20525621);“Simulation on transfer and coking processes in disengagers of resid fluid catalytic cracking units” (Grant No. 20406013);the National Natural Science Foundation for Distinguished Young Scholars of China (Grant No. 20725620).
文摘This paper presents experimental and computational studies on the flow behavior of a gas-solid fluidized bed with disparately sized binary particle mixtures. The mixing/segregation behavior and segregation efficiency of the small and large particles are investigated experimentally. Particle composition and operating conditions that influence the fluidization behavior of mixing/segregation are examined. Based on the granular kinetics theory, a multi-fluid CFD model has been developed and verified against the experimental results. The simulation results are in reasonable agreement with experimental data. The results showed that the smaller particles are found near the bed surface while the larger particles tend to settle down to the bed bottom in turbulent fluidized bed. However, complete segregation of the binary particles does not occur in the gas velocity range of 0.695-0.904 m/s. Segregation efficiency increases with increasing gas velocity and mean residence time of the binary particles, but decreases with increasing the small particle concentration. The calculated results also show that the small particles move downward in the wall region and upward in the core. Due to the effect of large particles on the movement of small particles, the small particles present a more turbulent velocity profile in the dense phase than that in the dilute phase.
文摘Microstructure evolution and texture development and their effects on mechanical properties of a Mg-Gd-Y-Zr alloy during equal channel angular pressing(ECAP) were investigated.It is found that the microstructure is still inhomogeneous after four passes,and two zones,namely the fine grain zone(FGZ) and the coarse grain zone(CGZ) are formed.The grain refinement occurs mainly by particle-stimulated nucleation(PSN) mechanism,which led to a more random texture after four passes of ECAP.In the ECAP-processed alloy,the strength did not increase while the ductility was enhanced dramatically compared with the as-received condition.The change of ductility of this alloy was discussed in terms of texture and second phase particles.
文摘The quantification of phosphorus(P) in bulk soil and P distribution in different size fractions of water-stable aggregates(WSAs)are important for assessing potential P loss through runoff. We evaluated available and total P distribution within WSAs of a sitty clay to clay soil in a long-term fertility experiment of a rice-wheat cropping system in India. Surface soil samples were collected from seven plots amended with NPK fertilizers in combination with or without organic amendments, farmyard manure(FYM), green manure(GM), and paddy straw(PS). The plot with no NPK fertilizers or organic amendments was set as a control. The soil samples were separated by wet sieving into four soil aggregate size fractions: large macroaggregates(> 2.0 mm), small macroaggregates(0.25–2.0 mm), fine microaggregates(0.05–0.25 mm), and a silt + clay-sized fraction(< 0.05 mm). Structural indices were higher in the soil receiving organic amendments than in the soil receiving inorganic fertilizer alone. Organically amended soil had a higher proportion of stable macroaggregates than the control and the soil receiving inorganic fertilizer alone, which were rich in microaggregates. Total and available P contents within WSAs were inversely related to the aggregate size, irrespective of treatment. The distribution of available and total P in the soil aggregate size fraction was as follows: silt + clay-size fraction > small macroaggregates > fine microaggregates> large macroaggregates. Within a size class, aggregate-associated available and total P contents in the organically amended soil were in the following order: FYM > PS ≥ GM. The available P content of the microaggregates(< 0.25 mm) was 8-to 10-times higher than that of the macroaggregates(> 0.25 mm), and the total P content of the microaggregates was 4-to 5-times higher than that of the macroaggregates. Cultivation without organic amendments resulted in more microaggregates that could be checked by the application of organic amendments such as FYM and GM, which increased the proport
基金the National Natural Science Foundation of China (No. 50471097)the Programme of Introducing Talents of Discipline to Chinese Universities (No. B07003).
文摘The coarsening behavior of γ particles in a nickel-base superalloy FGH95 was investigated by means of experimental observations and growth kinetics calculations. The results show that when aging at 1000,1080 and 1140°C for different times,the relation of average particle size to time obeys the cube law ( a /2)3= kt,where k is 15.49 × 103,77.5 × 103 and 230.04 × 103 nm3/min,respectively. The particle size distributions are better fit to the LSW theoretical distributions when aging at 1000°C within 1440 min....