In eukaryotes,protein phosphorylation is specifically catalyzed by numerous protein kinases(PKs),faithfully orchestrates various biological processes,and reversibly determines cellular dynamics and plasticity.Here we ...In eukaryotes,protein phosphorylation is specifically catalyzed by numerous protein kinases(PKs),faithfully orchestrates various biological processes,and reversibly determines cellular dynamics and plasticity.Here we report an updated algorithm of Group-based Prediction System(GPS)5.0 to improve the performance for predicting kinase-specific phosphorylation sites(p-sites).Two novel methods,position weight determination(PWD)and scoring matrix optimization(SMO),were developed.Compared with other existing tools,GPS 5.0 exhibits a highly competitive accuracy.Besides serine/threonine or tyrosine kinases,GPS 5.0 also supports the prediction of dual-specificity kinase-specific p-sites.In the classical module of GPS 5.0,617 individual predictors were constructed for predicting p-sites of 479 human PKs.To extend the application of GPS5.0,a species-specific module was implemented to predict kinase-specific p-sites for 44,795 PKs in161 eukaryotes.The online service and local packages of GPS 5.0 are freely available for academic research at http://gps.biocuckoo.cn.展开更多
Determining the base sequence of DNA broken site is quite crucial for the study on the cleavage site specificity and mechanism of various natural or synthetic DNA cleavage regents,and on developing novel therapeutic d...Determining the base sequence of DNA broken site is quite crucial for the study on the cleavage site specificity and mechanism of various natural or synthetic DNA cleavage regents,and on developing novel therapeutic drugs targeting at DNA.The most frequently used method depending on chemical reactions of the Maxam-Gilbert procedure,and the late arising methods used by Rui Ren et al.which were based on Sanger’s DNA sequencing strategy,all had some deficiencies,either the pollution of radioactive materials,or really complicated and difficult to operate.In the present paper,a new method for DNA cleavage site sequence determination was developed.The fluorescence FAM-labeled primer was annealed to the DNA fragments,which has been cleaved by restriction enzymes or other regents,and extended along the template sequence.The products then loaded onto the polyacrylamide electrophoresis gel of ABI 377 DNA Sequencer.Data was collected and analyzed by using ABI PRISM Data Collection Software and ABI PRISM Sequencing Analysis Software.It is proved to be a credible and simple new approach to determine the base sequence of DNA broken sites.展开更多
Side effects from targeted drugs remain a serious conccrn. One reason is the nonselective binding of a drug to unintended proteins such as its paralogs, which arc highly homologous in sequences and have similar struct...Side effects from targeted drugs remain a serious conccrn. One reason is the nonselective binding of a drug to unintended proteins such as its paralogs, which arc highly homologous in sequences and have similar structures and drug-binding pockets. To identify targctablc differences between paralogs, we analyzed two types (type-I and type-ll) of functional divergence between two paralogs in the known target protein receptor family G-protein coupled receptors (GPCRs) at the amino acid level. Paralogous protein receptors in glucagon-like subfamily, glucagon receptor (GCGR) and glucagon-like peptide-I receptor (GLP-I R), exhibit divergence in ligands and are clinically validated drug targets for type 2 diabetes. Our data showed that type-ll alnino acids were significantly enriched in the binding sites of antagonist MK-0893 to GCGR. which had a radical shift in physicochemical properties between GCGR and GLP-1R. We also examined the role of type-I amino acids between GCGR and GLP-IR. The divergent features between GCGR and GLP-I R paralogs may be helpful in their discrimination, thus enabling the identification of binding sites to reduce undesirable side effects and increase the target specificity of drugs.展开更多
发展高效、安全的肿瘤治疗方法是现代医学的主要挑战之一。目前临床上抗体偶联药物(antibody drug conjugates,ADC)已成为肿瘤治疗最有力的工具之一。传统的ADC药物是利用赖氨酸残基作为偶联位点,其偶联具有高度异质性,可能会导致药物...发展高效、安全的肿瘤治疗方法是现代医学的主要挑战之一。目前临床上抗体偶联药物(antibody drug conjugates,ADC)已成为肿瘤治疗最有力的工具之一。传统的ADC药物是利用赖氨酸残基作为偶联位点,其偶联具有高度异质性,可能会导致药物可重复性差,治疗指数低下。因此,如何通过位点特异性偶联来规避这些潜在问题是ADC药物研究的重点领域。最近几年,位点特异性的蛋白化学修饰方法领域取得的重大进展,也一定程度上促进了均质ADC药物的合成。因此,本文重点对目前用于构建ADC的位点特异性化学偶联方法进行综述,以期为抗体偶联药物偶联化学的发展提供参考。展开更多
基金Special Project on Precision Medicine under the National Key R&D Program of China(Grant Nos.2017YFC0906600 and 2018YFC0910500)National Natural Science Foundation of China(Grant Nos.31671360,81701567,and 31801095)+2 种基金National Program for Support of Top-Notch Young Professionals,Changjiang Scholars Program of Chinasupported by the program for HUST Academic Frontier Youth Team,Fundamental Research Funds for the Central Universities,China(Grant Nos.2017KFXKJC001 and 2019kfy RCPY043)China Postdoctoral Science Foundation(Grant Nos.2018M642816 and 2018M632870)
文摘In eukaryotes,protein phosphorylation is specifically catalyzed by numerous protein kinases(PKs),faithfully orchestrates various biological processes,and reversibly determines cellular dynamics and plasticity.Here we report an updated algorithm of Group-based Prediction System(GPS)5.0 to improve the performance for predicting kinase-specific phosphorylation sites(p-sites).Two novel methods,position weight determination(PWD)and scoring matrix optimization(SMO),were developed.Compared with other existing tools,GPS 5.0 exhibits a highly competitive accuracy.Besides serine/threonine or tyrosine kinases,GPS 5.0 also supports the prediction of dual-specificity kinase-specific p-sites.In the classical module of GPS 5.0,617 individual predictors were constructed for predicting p-sites of 479 human PKs.To extend the application of GPS5.0,a species-specific module was implemented to predict kinase-specific p-sites for 44,795 PKs in161 eukaryotes.The online service and local packages of GPS 5.0 are freely available for academic research at http://gps.biocuckoo.cn.
文摘Determining the base sequence of DNA broken site is quite crucial for the study on the cleavage site specificity and mechanism of various natural or synthetic DNA cleavage regents,and on developing novel therapeutic drugs targeting at DNA.The most frequently used method depending on chemical reactions of the Maxam-Gilbert procedure,and the late arising methods used by Rui Ren et al.which were based on Sanger’s DNA sequencing strategy,all had some deficiencies,either the pollution of radioactive materials,or really complicated and difficult to operate.In the present paper,a new method for DNA cleavage site sequence determination was developed.The fluorescence FAM-labeled primer was annealed to the DNA fragments,which has been cleaved by restriction enzymes or other regents,and extended along the template sequence.The products then loaded onto the polyacrylamide electrophoresis gel of ABI 377 DNA Sequencer.Data was collected and analyzed by using ABI PRISM Data Collection Software and ABI PRISM Sequencing Analysis Software.It is proved to be a credible and simple new approach to determine the base sequence of DNA broken sites.
基金supported by a grant from the National Natural Science Foundation of China(Grant No.31571355 and 31301034)supported by Fudan University,ChinaIowa State University,United States
文摘Side effects from targeted drugs remain a serious conccrn. One reason is the nonselective binding of a drug to unintended proteins such as its paralogs, which arc highly homologous in sequences and have similar structures and drug-binding pockets. To identify targctablc differences between paralogs, we analyzed two types (type-I and type-ll) of functional divergence between two paralogs in the known target protein receptor family G-protein coupled receptors (GPCRs) at the amino acid level. Paralogous protein receptors in glucagon-like subfamily, glucagon receptor (GCGR) and glucagon-like peptide-I receptor (GLP-I R), exhibit divergence in ligands and are clinically validated drug targets for type 2 diabetes. Our data showed that type-ll alnino acids were significantly enriched in the binding sites of antagonist MK-0893 to GCGR. which had a radical shift in physicochemical properties between GCGR and GLP-1R. We also examined the role of type-I amino acids between GCGR and GLP-IR. The divergent features between GCGR and GLP-I R paralogs may be helpful in their discrimination, thus enabling the identification of binding sites to reduce undesirable side effects and increase the target specificity of drugs.
文摘发展高效、安全的肿瘤治疗方法是现代医学的主要挑战之一。目前临床上抗体偶联药物(antibody drug conjugates,ADC)已成为肿瘤治疗最有力的工具之一。传统的ADC药物是利用赖氨酸残基作为偶联位点,其偶联具有高度异质性,可能会导致药物可重复性差,治疗指数低下。因此,如何通过位点特异性偶联来规避这些潜在问题是ADC药物研究的重点领域。最近几年,位点特异性的蛋白化学修饰方法领域取得的重大进展,也一定程度上促进了均质ADC药物的合成。因此,本文重点对目前用于构建ADC的位点特异性化学偶联方法进行综述,以期为抗体偶联药物偶联化学的发展提供参考。