期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于优化VMD-CNN-BiLSTM的电机轴承智能故障诊断研究 被引量:4
1
作者 曹景胜 于洋 +1 位作者 王琦 董翼宁 《现代电子技术》 北大核心 2024年第12期115-121,共7页
针对滚动轴承早期故障信号较弱及特征数据提取效果差,导致故障诊断准确率低以及故障诊断效率低的问题,提出一种信号处理结合深度神经网络的故障诊断方法。首先,采用变分模态分解(VMD)法提取主轴承振动数据中的特征数据;然后为了确定VMD... 针对滚动轴承早期故障信号较弱及特征数据提取效果差,导致故障诊断准确率低以及故障诊断效率低的问题,提出一种信号处理结合深度神经网络的故障诊断方法。首先,采用变分模态分解(VMD)法提取主轴承振动数据中的特征数据;然后为了确定VMD算法中最佳的模态分量个数K及惩罚参数α,增强特征提取的效果,将最小排列熵作为适应度函数,采用全局优化能力强的正弦混沌自适应鲸鱼优化算法(CAWOA)进行参数的确定,得到最优模态分量;接着,根据最优模态分量构造特征向量,将特征向量作为CNN-BiLSTM网络的输入,实现故障的分类。最后,根据实验平台采集的数据进行实验分析。结果表明,优化VMD-CNN-BiLSTM轴承故障诊断模型相较于其他故障诊断模型,在准确率以及实时性上均有明显提升。 展开更多
关键词 变分模态分解(VMD) 卷积神经网络(CNN) 双向长短期记忆(BiLSTM) 滚动轴承 智能故障诊断 特征数据提取 正弦混沌自适应鲸鱼优化算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部