Oxygen vacancy OV plays an important role in a flash sintering (FS) process. In defect engineering, the methods of creating oxygen vacancy defects include doping, heating, and etching, and all of them often have compl...Oxygen vacancy OV plays an important role in a flash sintering (FS) process. In defect engineering, the methods of creating oxygen vacancy defects include doping, heating, and etching, and all of them often have complex processes or equipment. In this study, we used dielectric barrier discharge (DBD) as a new defect engineering technology to increase oxygen vacancy concentrations of green billets with different ceramics (ZnO, TiO_(2), and 3 mol% yttria-stabilized zirconia (3YSZ)). With an alternating current (AC) power supply of 10 kHz, low-temperature plasma was generated, and a specimen could be treated in different atmospheres. The effect of the DBD treatment was influenced by atmosphere, treatment time, and voltage amplitude of the power supply. After the DBD treatment, the oxygen vacancy defect concentration in ZnO samples increased significantly, and a resistance test showed that conductivity of the samples increased by 2–3 orders of magnitude. Moreover, the onset electric field (E) of ZnO FS decreased from 5.17 to 0.86 kV/cm at room temperature (RT);while in the whole FS, the max power dissipation decreased from 563.17 to 27.94 W. The defect concentration and conductivity of the green billets for TiO_(2) and 3YSZ were also changed by the DBD, and then the FS process was modified. It is a new technology to treat the green billet of ceramics in very short time, applicable to other ceramics, and beneficial to regulate the FS process.展开更多
Flash sintering(FS)is a novel technique for rapidly densifying silicon carbide(SiC)ceramics.This work achieved a rapid sintering of SiC ceramics by the utilization of ultra-high temperature flash sintering within 60 s...Flash sintering(FS)is a novel technique for rapidly densifying silicon carbide(SiC)ceramics.This work achieved a rapid sintering of SiC ceramics by the utilization of ultra-high temperature flash sintering within 60 s.Pyrolysis carbon(PyC)“bridges”were constructed between SiC particles through the carbonisation of phenolic resin,providing a large number of current channels.The incubation time of the flash sintering process was significantly reduced,and the sintering difference between the centre and the edge regions of the ceramics was minimized,with an average particle size of the centre region and edge region being 12.31 and 9.02μm,respectively.The results showed that the porosity of the SiC ceramics after the flash sintering was reduced to 14.79% with PyC“bridges”introduced,and the Vickers hardness reached 19.62 GPa.PyC“bridges”gradually evolved from amorphous eddy current carbon to oriented graphite carbon,indicating that the ultra-high temperature environment in which the sample was located during the flash sintering was successfully constructed.Ultra-high temperature flash sintering of SiC is expected to be applied to the local repair of matrix damage in SiC ceramic matrix composites.展开更多
For the first time,the flash sintering(FS)of high-purity alumina at room temperature,which was previously considered unachievable due to its low electrical conductivity,was conducted herein.The electrical arc originat...For the first time,the flash sintering(FS)of high-purity alumina at room temperature,which was previously considered unachievable due to its low electrical conductivity,was conducted herein.The electrical arc originating from surface flashover was harnessed to induce FS at room temperature and low air pressure.The successful FS of high-purity alumina was realized at 60 kPa under the arc constraint,resulting in a notable relative density of the alumina sample of 98.7%.The electric–thermal coupling between the arc and high-purity alumina sample during the arc-induced FS process was analyzed via the finite element simulation method.The results revealed the thermal and electrical effects of the arc on the sample,which ultimately enhance the electrical conductivity of the alumina sample.The formation of a conductive channel on the sample surface,a result of increased electrical conductivity,was the pivotal factor in achieving FS in high-purity alumina at room temperature.The arc constraint technique can be applied to numerous materials,such as ionic conductors,semiconductors,and even insulators,under room-temperature and low-air-pressure conditions.展开更多
In this study,we reported that flash sintering(FS)could be efficiently triggered at room temperature(25℃)by manipulating the oxygen concentration within ZnO powders via a versatile defect engineering strategy,fully d...In this study,we reported that flash sintering(FS)could be efficiently triggered at room temperature(25℃)by manipulating the oxygen concentration within ZnO powders via a versatile defect engineering strategy,fully demonstrating a promising method for the repaid prototyping of ceramics.With a low concentration of oxygen defects,FS was only activated at a high onset electric field of~2.7 kV/cm,while arcs appearing on the surfaces of samples.Strikingly,the onset electric field was decreased to<0.51 kV/cm for the activation of FS initiated,which was associated with increased oxygen concentrations coupled with increased electrical conductivity.Thereby,a general room-temperature FS strategy by introducing intrinsic structural defect is suggested for a broad range of ceramics that are prone to form high concentration of point defects.展开更多
基金supported by the National Natural Science Foundation of China(No.52077118)the Guangdong Basic and Applied Basic Research Foundation(No.2021A1515011778)State Key Laboratory of Power System Operation and Control,Tsinghua University(No.SKLD22KM01).
文摘Oxygen vacancy OV plays an important role in a flash sintering (FS) process. In defect engineering, the methods of creating oxygen vacancy defects include doping, heating, and etching, and all of them often have complex processes or equipment. In this study, we used dielectric barrier discharge (DBD) as a new defect engineering technology to increase oxygen vacancy concentrations of green billets with different ceramics (ZnO, TiO_(2), and 3 mol% yttria-stabilized zirconia (3YSZ)). With an alternating current (AC) power supply of 10 kHz, low-temperature plasma was generated, and a specimen could be treated in different atmospheres. The effect of the DBD treatment was influenced by atmosphere, treatment time, and voltage amplitude of the power supply. After the DBD treatment, the oxygen vacancy defect concentration in ZnO samples increased significantly, and a resistance test showed that conductivity of the samples increased by 2–3 orders of magnitude. Moreover, the onset electric field (E) of ZnO FS decreased from 5.17 to 0.86 kV/cm at room temperature (RT);while in the whole FS, the max power dissipation decreased from 563.17 to 27.94 W. The defect concentration and conductivity of the green billets for TiO_(2) and 3YSZ were also changed by the DBD, and then the FS process was modified. It is a new technology to treat the green billet of ceramics in very short time, applicable to other ceramics, and beneficial to regulate the FS process.
基金supported by the National Natural Science Foundation of China(No.92160202)the National Natural Science Foundation of China(No.52375188)+1 种基金the National Key R&D Program of China(No.2021YFB3703100)the Ningbo Key Technology Research and Development(No.2023T007).
文摘Flash sintering(FS)is a novel technique for rapidly densifying silicon carbide(SiC)ceramics.This work achieved a rapid sintering of SiC ceramics by the utilization of ultra-high temperature flash sintering within 60 s.Pyrolysis carbon(PyC)“bridges”were constructed between SiC particles through the carbonisation of phenolic resin,providing a large number of current channels.The incubation time of the flash sintering process was significantly reduced,and the sintering difference between the centre and the edge regions of the ceramics was minimized,with an average particle size of the centre region and edge region being 12.31 and 9.02μm,respectively.The results showed that the porosity of the SiC ceramics after the flash sintering was reduced to 14.79% with PyC“bridges”introduced,and the Vickers hardness reached 19.62 GPa.PyC“bridges”gradually evolved from amorphous eddy current carbon to oriented graphite carbon,indicating that the ultra-high temperature environment in which the sample was located during the flash sintering was successfully constructed.Ultra-high temperature flash sintering of SiC is expected to be applied to the local repair of matrix damage in SiC ceramic matrix composites.
基金This work was supported by the National Natural Science Foundation of China(52077118)Guangdong Basic and Applied Basic Research Foundation(2021A1515011778)Key Laboratory of Engineering Dielectrics and Its Application(Harbin University of Science and Technology),Ministry of Education(KFM202204).
文摘For the first time,the flash sintering(FS)of high-purity alumina at room temperature,which was previously considered unachievable due to its low electrical conductivity,was conducted herein.The electrical arc originating from surface flashover was harnessed to induce FS at room temperature and low air pressure.The successful FS of high-purity alumina was realized at 60 kPa under the arc constraint,resulting in a notable relative density of the alumina sample of 98.7%.The electric–thermal coupling between the arc and high-purity alumina sample during the arc-induced FS process was analyzed via the finite element simulation method.The results revealed the thermal and electrical effects of the arc on the sample,which ultimately enhance the electrical conductivity of the alumina sample.The formation of a conductive channel on the sample surface,a result of increased electrical conductivity,was the pivotal factor in achieving FS in high-purity alumina at room temperature.The arc constraint technique can be applied to numerous materials,such as ionic conductors,semiconductors,and even insulators,under room-temperature and low-air-pressure conditions.
基金This work was supported by the National Natural Science Foundation of China(No.52077118)the Guangdong Basic and Applied Basic Research Foundation(No.2021A1515011778)the State Key Laboratory of New Ceramics and Fine Processing Tsinghua University(No.KFZD201903).
文摘In this study,we reported that flash sintering(FS)could be efficiently triggered at room temperature(25℃)by manipulating the oxygen concentration within ZnO powders via a versatile defect engineering strategy,fully demonstrating a promising method for the repaid prototyping of ceramics.With a low concentration of oxygen defects,FS was only activated at a high onset electric field of~2.7 kV/cm,while arcs appearing on the surfaces of samples.Strikingly,the onset electric field was decreased to<0.51 kV/cm for the activation of FS initiated,which was associated with increased oxygen concentrations coupled with increased electrical conductivity.Thereby,a general room-temperature FS strategy by introducing intrinsic structural defect is suggested for a broad range of ceramics that are prone to form high concentration of point defects.