In this article, a direct stress approach based on finite element analysis to determine the stress intensity factor is improved. Firstly, by comparing the rigorous solution against the asymptotic solution for a proble...In this article, a direct stress approach based on finite element analysis to determine the stress intensity factor is improved. Firstly, by comparing the rigorous solution against the asymptotic solution for a problem of an infinite plate embedded a central crack, we found that the stresses in a restrictive interval near the crack tip given by the rigorous solution can be used to determine the stress intensity factor, which is nearly equal to the stress intensity factor given by the asymptotic solution. Secondly, the crack problem is solved numerically by the finite element method. Depending on the modeling capability of the software, we designed an adaptive mesh model to simulate the stress singularity. Thus, the stress result in an appropriate interval near the crack tip is fairly approximated to the rigorous solution of the corresponding crack problem. Therefore, the stress intensity factor may be calculated from the stress distribution in the appropriate interval, with a high accuracy.展开更多
An infinite element method for solving elliptic equations with variable coefficients ispresented in this paper. For those solutions which possess singularities,very accurate singu-lar numerical solutions can be obtain...An infinite element method for solving elliptic equations with variable coefficients ispresented in this paper. For those solutions which possess singularities,very accurate singu-lar numerical solutions can be obtained with a small scale of computation; besides, it isunnecessary to know the order of singularity of the solutions or the analytic expressionsof particular solutions in advance. A numerical example is given in contrast with the finiteelement method.展开更多
Although boundary displacement and traction are independent field variables in boundary conditions of an elasticity problem at a non-singular boundary point, there exist definite relations of singularity intensities b...Although boundary displacement and traction are independent field variables in boundary conditions of an elasticity problem at a non-singular boundary point, there exist definite relations of singularity intensities between boundary displacement derivatives and tractions at a singular boundary point. The analytical forms of the relations at a singular smooth point for 2D isotropic elastic problems have been established in this work. By using the relations, positions of the singular boundary points and the corresponding singularity intensities of the unknown boundary field variables can be determined a priori. Therefore, more appropriate shape functions of the unknown boundary field variables in singular elements can be constructed. A numerical example shows that the accuracy of the BEM analysis using the developed theory is greatly increased.展开更多
基金financial support of the National Natural Science Foundation of China (Grant 11572226)
文摘In this article, a direct stress approach based on finite element analysis to determine the stress intensity factor is improved. Firstly, by comparing the rigorous solution against the asymptotic solution for a problem of an infinite plate embedded a central crack, we found that the stresses in a restrictive interval near the crack tip given by the rigorous solution can be used to determine the stress intensity factor, which is nearly equal to the stress intensity factor given by the asymptotic solution. Secondly, the crack problem is solved numerically by the finite element method. Depending on the modeling capability of the software, we designed an adaptive mesh model to simulate the stress singularity. Thus, the stress result in an appropriate interval near the crack tip is fairly approximated to the rigorous solution of the corresponding crack problem. Therefore, the stress intensity factor may be calculated from the stress distribution in the appropriate interval, with a high accuracy.
文摘An infinite element method for solving elliptic equations with variable coefficients ispresented in this paper. For those solutions which possess singularities,very accurate singu-lar numerical solutions can be obtained with a small scale of computation; besides, it isunnecessary to know the order of singularity of the solutions or the analytic expressionsof particular solutions in advance. A numerical example is given in contrast with the finiteelement method.
文摘Although boundary displacement and traction are independent field variables in boundary conditions of an elasticity problem at a non-singular boundary point, there exist definite relations of singularity intensities between boundary displacement derivatives and tractions at a singular boundary point. The analytical forms of the relations at a singular smooth point for 2D isotropic elastic problems have been established in this work. By using the relations, positions of the singular boundary points and the corresponding singularity intensities of the unknown boundary field variables can be determined a priori. Therefore, more appropriate shape functions of the unknown boundary field variables in singular elements can be constructed. A numerical example shows that the accuracy of the BEM analysis using the developed theory is greatly increased.