期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于S变换与奇异值中值分解的滚动轴承故障诊断 被引量:1
1
作者 字玉 周俊 《机电工程》 CAS 北大核心 2022年第7期949-954,共6页
为了有效地提取出滚动轴承故障信号的冲击特征,提出了一种基于S变换时频谱和奇异值中值分解(SVMD)算法的滚动轴承故障诊断方法。首先,利用S变换对滚动轴承原始振动信号进行了时频变换,得到了其时频系数矩阵,通过SVMD对时频系数矩阵进行... 为了有效地提取出滚动轴承故障信号的冲击特征,提出了一种基于S变换时频谱和奇异值中值分解(SVMD)算法的滚动轴承故障诊断方法。首先,利用S变换对滚动轴承原始振动信号进行了时频变换,得到了其时频系数矩阵,通过SVMD对时频系数矩阵进行了计算,筛选出合适的奇异值用以降噪;然后,通过仿真的方式,对结果进行了S逆变换,以获得信号的时域冲击特征;最后,以滚动轴承(型号N205)外圈、滚动体故障为例,进行了故障信号冲击特征提取实验,通过对轴承的外圈和滚动体故障数据分析处理,对基于ST-SVMD算法的有效性进行了验证。研究结果表明:通过采用基于ST-SVMD算法,得到了滚动轴承外圈的故障频率,该频率与该型号轴承特征频率基本一致;基于ST-SVMD算法,得到了滚动轴承滚动体的故障频率,该频率与该型号轴承特征频率基本一致;该结果证明,基于ST-SVMD算法在滚动轴承故障信号冲击特征的提取方面是有效的。 展开更多
关键词 滚动轴承振动信号 故障频率 S变换 奇异值中值分解 冲击特征提取 信号降噪处理
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部