In this paper, the author discusses the multiple positive solutions for an infinite boundary value problem of first order impulsive singular integro-differential equations on the half line by means of the fixed point ...In this paper, the author discusses the multiple positive solutions for an infinite boundary value problem of first order impulsive singular integro-differential equations on the half line by means of the fixed point theorem of cone expansion and compression with norm type.展开更多
By applying fixed point theorem, the existence of positive solution is considered for superlinear semipositone singular m-point boundary value problem -(Lφ)(x)=(p(x)φ′(x))′+q(x)φ(x) and ξi ∈ (0,...By applying fixed point theorem, the existence of positive solution is considered for superlinear semipositone singular m-point boundary value problem -(Lφ)(x)=(p(x)φ′(x))′+q(x)φ(x) and ξi ∈ (0,1)with 0〈ξ1〈ξ2……〈ξm-2〈1,αi ∈ R^+,f ∈C[(0,1)×R^+,R^+],f(x,φ) may be singular at x=0 and x=1,g(x):(0,1)→R is Lebesgue measurable, g may tend to negative infinity and have finitely many singularities.展开更多
In this paper, we study the existence of nonnegative solutions of singular (n - 1,1) conjugate boundary value problemwith boundary value conditions u(k)(0) = 0(0≤k≤n - 2) and u(I) = 0. Where a(t) may have finitely m...In this paper, we study the existence of nonnegative solutions of singular (n - 1,1) conjugate boundary value problemwith boundary value conditions u(k)(0) = 0(0≤k≤n - 2) and u(I) = 0. Where a(t) may have finitely many singularities. Our results essentially generalized paper [1] and other related literature (for example [4]).展开更多
We study boundary value problems for fractional integro-differential equations involving Caputo derivative of order α∈ (n-1, n) in Banach spaces. Existence and uniqueness results of solutions are established by vi...We study boundary value problems for fractional integro-differential equations involving Caputo derivative of order α∈ (n-1, n) in Banach spaces. Existence and uniqueness results of solutions are established by virtue of the Holder's inequality, a suitable singular Cronwall's inequality and fixed point theorem via a priori estimate method. At last, examples are given to illustrate the results.展开更多
In this paper, by the theorem of differential inequalities, we prove the existence of the solution of a singularly perturbed boundary value problem of thirdorder nonlinear differential equation with two turning points.
By constructing a particular closed convex set and applying the Monch fixedpoint theorem, we study the existence of positive solution for a class of singular m-point boundary value problems.
In this paper, the solvability of singular one dimensional p-Laplacian-like equation with Neumann boundary conditions is considered. Under certain conditions on the operator and the nonlinear term which allows singula...In this paper, the solvability of singular one dimensional p-Laplacian-like equation with Neumann boundary conditions is considered. Under certain conditions on the operator and the nonlinear term which allows singularity, the sufficient and necessary condition for the existence of the solution to the problem is obtained. The main method is based on a-priori estimate for the lower bound of solutions, truncation arguments and the Schauder's fixed point theorem.展开更多
In this paper, we investigate the existence of positive solutions for the singular fourth-order differential system <em>u</em><sup>(4)</sup> = <em><span style="white-space:nowrap;...In this paper, we investigate the existence of positive solutions for the singular fourth-order differential system <em>u</em><sup>(4)</sup> = <em><span style="white-space:nowrap;">φ</span>u</em> + <em>f </em>(<em>t</em>, <em>u</em>, <em>u</em>”, <em><span style="white-space:nowrap;">φ</span></em>), 0 < <em>t</em> < 1, -<em><span style="white-space:nowrap;">φ</span></em>” = <em>μg</em> (<em>t</em>, <em>u</em>, <em>u</em>”), 0 < <em>t</em> < 1, <em>u</em> (0) = <em>u</em> (1) = <em>u</em>”(0) = <em>u</em>”(1) = 0, <em><span style="white-space:nowrap;">φ</span> </em>(0) = <em><span style="white-space:nowrap;">φ</span> </em>(1) = 0;where <em>μ</em> > 0 is a constant, and the nonlinear terms<em> f</em>, <em>g</em> may be singular with respect to both the time and space variables. The results obtained herein generalize and improve some known results including singular and non-singular cases.展开更多
Matrix methods, now-a-days, are playing an important role in solving the real life problems governed by ODEs and/or by PDEs. Many differential models of sciences and engineers for which the existing methodologies do n...Matrix methods, now-a-days, are playing an important role in solving the real life problems governed by ODEs and/or by PDEs. Many differential models of sciences and engineers for which the existing methodologies do not give reliable results, these methods are solving them competitively. In this work, a matrix methods is presented for approximate solution of the second-order singularly-perturbed delay differential equations. The main characteristic of this technique is that it reduces these problems to those of solving a system of algebraic equations, thus greatly simplifying the problem. The error analysis and convergence for the proposed method is introduced. Finally some experiments and their numerical solutions are given.展开更多
基金supported by the National Nature Science Foundation of China (10671167)
文摘In this paper, the author discusses the multiple positive solutions for an infinite boundary value problem of first order impulsive singular integro-differential equations on the half line by means of the fixed point theorem of cone expansion and compression with norm type.
基金Foundation item: Supported by the National Natural Science Foundation of China(10671167) Supported by the Research Foundation of Liaocheng University(31805)
文摘By applying fixed point theorem, the existence of positive solution is considered for superlinear semipositone singular m-point boundary value problem -(Lφ)(x)=(p(x)φ′(x))′+q(x)φ(x) and ξi ∈ (0,1)with 0〈ξ1〈ξ2……〈ξm-2〈1,αi ∈ R^+,f ∈C[(0,1)×R^+,R^+],f(x,φ) may be singular at x=0 and x=1,g(x):(0,1)→R is Lebesgue measurable, g may tend to negative infinity and have finitely many singularities.
基金Supported by the Natural Science Foundation of China (No.10071043) Natural Science Foundation of Shandong Province (No.Y2000A06).
文摘In this paper, we study the existence of nonnegative solutions of singular (n - 1,1) conjugate boundary value problemwith boundary value conditions u(k)(0) = 0(0≤k≤n - 2) and u(I) = 0. Where a(t) may have finitely many singularities. Our results essentially generalized paper [1] and other related literature (for example [4]).
基金supported by Grant In Aid research fund of Virginia Military Instittue, USA
文摘We study boundary value problems for fractional integro-differential equations involving Caputo derivative of order α∈ (n-1, n) in Banach spaces. Existence and uniqueness results of solutions are established by virtue of the Holder's inequality, a suitable singular Cronwall's inequality and fixed point theorem via a priori estimate method. At last, examples are given to illustrate the results.
文摘In this paper, by the theorem of differential inequalities, we prove the existence of the solution of a singularly perturbed boundary value problem of thirdorder nonlinear differential equation with two turning points.
基金The project is supported by the National Natural Science Foundation of China(10671167)the Research Foundation of Liaocheng University(31805).
文摘By constructing a particular closed convex set and applying the Monch fixedpoint theorem, we study the existence of positive solution for a class of singular m-point boundary value problems.
基金the Youth Fund of USTC, Thud of Chinese Academy of Sciences and the National Natural Science Foundation of China (No.10071080)
文摘In this paper, the solvability of singular one dimensional p-Laplacian-like equation with Neumann boundary conditions is considered. Under certain conditions on the operator and the nonlinear term which allows singularity, the sufficient and necessary condition for the existence of the solution to the problem is obtained. The main method is based on a-priori estimate for the lower bound of solutions, truncation arguments and the Schauder's fixed point theorem.
文摘In this paper, we investigate the existence of positive solutions for the singular fourth-order differential system <em>u</em><sup>(4)</sup> = <em><span style="white-space:nowrap;">φ</span>u</em> + <em>f </em>(<em>t</em>, <em>u</em>, <em>u</em>”, <em><span style="white-space:nowrap;">φ</span></em>), 0 < <em>t</em> < 1, -<em><span style="white-space:nowrap;">φ</span></em>” = <em>μg</em> (<em>t</em>, <em>u</em>, <em>u</em>”), 0 < <em>t</em> < 1, <em>u</em> (0) = <em>u</em> (1) = <em>u</em>”(0) = <em>u</em>”(1) = 0, <em><span style="white-space:nowrap;">φ</span> </em>(0) = <em><span style="white-space:nowrap;">φ</span> </em>(1) = 0;where <em>μ</em> > 0 is a constant, and the nonlinear terms<em> f</em>, <em>g</em> may be singular with respect to both the time and space variables. The results obtained herein generalize and improve some known results including singular and non-singular cases.
文摘Matrix methods, now-a-days, are playing an important role in solving the real life problems governed by ODEs and/or by PDEs. Many differential models of sciences and engineers for which the existing methodologies do not give reliable results, these methods are solving them competitively. In this work, a matrix methods is presented for approximate solution of the second-order singularly-perturbed delay differential equations. The main characteristic of this technique is that it reduces these problems to those of solving a system of algebraic equations, thus greatly simplifying the problem. The error analysis and convergence for the proposed method is introduced. Finally some experiments and their numerical solutions are given.