The plane elastic problem for a semi-strip with a transverse crack is inves- tigated. The initial problem is reduced to a one-dimensional continuous problem by use of an integral transformation method with a generaliz...The plane elastic problem for a semi-strip with a transverse crack is inves- tigated. The initial problem is reduced to a one-dimensional continuous problem by use of an integral transformation method with a generalized scheme. The one-dimensional problem is first formulated as a vector boundary problem, and then reduced to a system of three singular integral equations (SIEs). The system is solved by use of an orthogonal polynomial method and a special generalized method. The contribution of this work is the consideration of kernel fixed singularities in solving the system. The crack length and its location relative to the semi-strip's lateral sides are investigated to simplify the problem's statement. This simplification reduces the initial problem to a system of two SIEs.展开更多
In this paper, we consider a singular nth order three-point boundary value problem with sign changing nonlinearity. By the method of lower solution and topology degree theorem, we investigate the existence of positive...In this paper, we consider a singular nth order three-point boundary value problem with sign changing nonlinearity. By the method of lower solution and topology degree theorem, we investigate the existence of positive solutions to the above problem. Moreover, the associated Green’s function for the above problem is also given. The results of this paper are new and extend the previous known results.展开更多
In naval architectures, the structure of prismatic shell is used widely. But there is no suitable method to analyze this kind of structure. Stiffened prismatic shell method (SPSM) presented in this paper, is one of th...In naval architectures, the structure of prismatic shell is used widely. But there is no suitable method to analyze this kind of structure. Stiffened prismatic shell method (SPSM) presented in this paper, is one of the harmonic semi-analytic methods. Theoretically, strong stiffened structure can be analyzed economically and accurately. SPSM is based on the analytical solution of the governing differential equations for orthotropic cylindrical shells. In these differential equations, the torsional stiffness, bending stiffness and the exact position of each stiffener are taken into account with the Heaviside singular function. An algorithm is introduced, in which the actions of stiffeners on shells are replaced by external loads at each stiffener position. Stiffened shells can be computed as non-stiffened shells. Eventually, the displacement solution of the equations is acquired by the introduction of Green function. The stresses in a corrugated transverse bulkhead without pier base of an oil tanker are computed by using SPSM.展开更多
This paper proposes the continuous-time singular value decomposition (SVD) for the impulse response function, a special kind of Green’s functions, in order to find a set of singular functions and singular values so t...This paper proposes the continuous-time singular value decomposition (SVD) for the impulse response function, a special kind of Green’s functions, in order to find a set of singular functions and singular values so that the convolutions of such function with the set of singular functions on a specified domain are the solutions to the inhomogeneous differential equations for those singular functions. A numerical example was illustrated to verify the proposed method. Besides the continuous-time SVD, a discrete-time SVD is also presented for the impulse response function, which is modeled using a Toeplitz matrix in the discrete system. The proposed method has broad applications in signal processing, dynamic system analysis, acoustic analysis, thermal analysis, as well as macroeconomic modeling.展开更多
The paper develops and examines the complete solutions for the elastic field induced by the point load vector in a general functionally graded material(FGM)model with transverse isotropy.The FGMs are approximated with...The paper develops and examines the complete solutions for the elastic field induced by the point load vector in a general functionally graded material(FGM)model with transverse isotropy.The FGMs are approximated with n-layered materials.Each of the n-layered materials is homogeneous and transversely isotropic.The complete solutions of the displacement and stress fields are explicitly expressed in the forms of fifteen classical Hankel transform integrals with ten kernel functions.The ten kernel functions are explicitly expressed in the forms of backward transfer matrices and have clear mathematical properties.The singular terms of the complete solutions are analytically isolated and expressed in exact closed forms in terms of elementary harmonic functions.Numerical results show that the computation of the complete solutions can be achieved with high accuracy and efficiency.展开更多
In the present paper, the singular perturbations for the higher-order scalar nonlinear boundary value problem epsilon(2)y(n)=f(t,epsilon y,y',...,y((n-2)),epsilon y((n-1)), t is an element of[0,1] H1(y(0,epsilon),...In the present paper, the singular perturbations for the higher-order scalar nonlinear boundary value problem epsilon(2)y(n)=f(t,epsilon y,y',...,y((n-2)),epsilon y((n-1)), t is an element of[0,1] H1(y(0,epsilon),...,y((n-3))(0,epsilon),epsilon y((n-2))(0,epsilon),epsilon y((n-1))(0,epsilon),epsilon)=0, H2(y(0,epsilon),y((n-1))(0,epsilon),y(1,epsilon)...,y((n-1))(1,epsilon),epsilon=0 are studied, where epsilon > 0 is a small parameter, n greater than or equal to 2. Under some mild assumptions, we prove the existence and local uniqueness of the perturbed solution and give out the uniformly valid asymptotic expansions up to its nth-order derivative function by employing the Banach/Picard fixed-point theorem. Then the existing results are extended and improved.展开更多
A class of nonlinear fractional differential equations with conformable fractional differential derivatives is studied. Firstly, Green's function and its properties are given. Secondly, some new existence and mult...A class of nonlinear fractional differential equations with conformable fractional differential derivatives is studied. Firstly, Green's function and its properties are given. Secondly, some new existence and multiplicity conditions of positive solutions are obtained by the use of Leggett-Williams fixed-point theorems on cone.展开更多
文摘The plane elastic problem for a semi-strip with a transverse crack is inves- tigated. The initial problem is reduced to a one-dimensional continuous problem by use of an integral transformation method with a generalized scheme. The one-dimensional problem is first formulated as a vector boundary problem, and then reduced to a system of three singular integral equations (SIEs). The system is solved by use of an orthogonal polynomial method and a special generalized method. The contribution of this work is the consideration of kernel fixed singularities in solving the system. The crack length and its location relative to the semi-strip's lateral sides are investigated to simplify the problem's statement. This simplification reduces the initial problem to a system of two SIEs.
基金Project supported by the National Natural Science Foundation of China (10771212)the Natural Science Foundation of Jiangsu Education Office (06KJB110010)
文摘In this paper, we consider a singular nth order three-point boundary value problem with sign changing nonlinearity. By the method of lower solution and topology degree theorem, we investigate the existence of positive solutions to the above problem. Moreover, the associated Green’s function for the above problem is also given. The results of this paper are new and extend the previous known results.
文摘In naval architectures, the structure of prismatic shell is used widely. But there is no suitable method to analyze this kind of structure. Stiffened prismatic shell method (SPSM) presented in this paper, is one of the harmonic semi-analytic methods. Theoretically, strong stiffened structure can be analyzed economically and accurately. SPSM is based on the analytical solution of the governing differential equations for orthotropic cylindrical shells. In these differential equations, the torsional stiffness, bending stiffness and the exact position of each stiffener are taken into account with the Heaviside singular function. An algorithm is introduced, in which the actions of stiffeners on shells are replaced by external loads at each stiffener position. Stiffened shells can be computed as non-stiffened shells. Eventually, the displacement solution of the equations is acquired by the introduction of Green function. The stresses in a corrugated transverse bulkhead without pier base of an oil tanker are computed by using SPSM.
文摘This paper proposes the continuous-time singular value decomposition (SVD) for the impulse response function, a special kind of Green’s functions, in order to find a set of singular functions and singular values so that the convolutions of such function with the set of singular functions on a specified domain are the solutions to the inhomogeneous differential equations for those singular functions. A numerical example was illustrated to verify the proposed method. Besides the continuous-time SVD, a discrete-time SVD is also presented for the impulse response function, which is modeled using a Toeplitz matrix in the discrete system. The proposed method has broad applications in signal processing, dynamic system analysis, acoustic analysis, thermal analysis, as well as macroeconomic modeling.
基金Project supported by the National Natural Science Foundation of China(No.42207182)the Research Grants Council of the Hong Kong Special Administrative Region Government of China(Nos.HKU 17207518 and R5037-18)。
文摘The paper develops and examines the complete solutions for the elastic field induced by the point load vector in a general functionally graded material(FGM)model with transverse isotropy.The FGMs are approximated with n-layered materials.Each of the n-layered materials is homogeneous and transversely isotropic.The complete solutions of the displacement and stress fields are explicitly expressed in the forms of fifteen classical Hankel transform integrals with ten kernel functions.The ten kernel functions are explicitly expressed in the forms of backward transfer matrices and have clear mathematical properties.The singular terms of the complete solutions are analytically isolated and expressed in exact closed forms in terms of elementary harmonic functions.Numerical results show that the computation of the complete solutions can be achieved with high accuracy and efficiency.
基金partially supported by Technological Innovation Talents in Universities and Colleges in Henan Province(No.21HASTIT025)Natural Science Foundation of Henan Province(Nos.222300420449,222300420171)+3 种基金Key Research Funds for the Universities of Henan Province(No.21A120005)Innovative Research Team of Henan Polytechnic University(No.T20227)Fundamental Research Funds for the Universities of Henan Provience(No.NSFRF220420)Foundation for Key Teacher by Henan Polytechnic University(No.2022XQG09)。
文摘In the present paper, the singular perturbations for the higher-order scalar nonlinear boundary value problem epsilon(2)y(n)=f(t,epsilon y,y',...,y((n-2)),epsilon y((n-1)), t is an element of[0,1] H1(y(0,epsilon),...,y((n-3))(0,epsilon),epsilon y((n-2))(0,epsilon),epsilon y((n-1))(0,epsilon),epsilon)=0, H2(y(0,epsilon),y((n-1))(0,epsilon),y(1,epsilon)...,y((n-1))(1,epsilon),epsilon=0 are studied, where epsilon > 0 is a small parameter, n greater than or equal to 2. Under some mild assumptions, we prove the existence and local uniqueness of the perturbed solution and give out the uniformly valid asymptotic expansions up to its nth-order derivative function by employing the Banach/Picard fixed-point theorem. Then the existing results are extended and improved.
基金The Innovation Foundation for College Teaching Team of Shanxi University of Finance and Economics2015 Education and Teaching Reform Project(2015234) of Shanxi University of Finance and Economics
文摘A class of nonlinear fractional differential equations with conformable fractional differential derivatives is studied. Firstly, Green's function and its properties are given. Secondly, some new existence and multiplicity conditions of positive solutions are obtained by the use of Leggett-Williams fixed-point theorems on cone.