为解决传统有限集模型预测电流控制FCS-MPCC(finite-control-set model predictive current control)方法下开关频率不固定和网侧电流谐波大等问题,以单相PWM整流器为研究对象,研究了一种两矢量有限集模型预测电流控制TV-FCS-MPCC(two-v...为解决传统有限集模型预测电流控制FCS-MPCC(finite-control-set model predictive current control)方法下开关频率不固定和网侧电流谐波大等问题,以单相PWM整流器为研究对象,研究了一种两矢量有限集模型预测电流控制TV-FCS-MPCC(two-vector-based finite-control-set model predictive current control)方法。该方法根据整流器的3种电压矢量进行扇区划分,并在每个开关周期内同时作用一个扇区内的2个边界矢量;结合电流误差评价函数,求解出各扇区边界电压矢量的最优作用时间;最后采用电流误差评价函数值最小的扇区边界矢量,并通过调制模块产生相应开关信号。为验证所提方法的正确性和有效性,在小功率实验平台上对该TV-FCS-MPCC与传统FCS-MPCC方法进行了实验对比研究,研究结果表明:TV-FCS-MPCC方法可以有效实现单相PWM整流器的控制目标,与传统FCS-MPCC方法相比,所提方法可以实现开关频率的固定,并降低网侧电流THD。展开更多
以单相脉宽调制(pulse width modulation,PWM)变换器作为研究对象,以改善电流控制器的动态性能为目的,提出一种无延时控制方法。单相变换器传统矢量控制方法需要虚构正交电流分量,但传统正交信号发生器(orthogonal signal generator,OSG...以单相脉宽调制(pulse width modulation,PWM)变换器作为研究对象,以改善电流控制器的动态性能为目的,提出一种无延时控制方法。单相变换器传统矢量控制方法需要虚构正交电流分量,但传统正交信号发生器(orthogonal signal generator,OSG)在虚构出与单相电网电流正交的物理量时存在一定的延时,从而会恶化电流控制器的动态性能。针对虚构电流引起的延时问题,提出了一种无延时单相并网变换器电流控制方法。首先,建立了单相PWM变换器在dq旋转坐标系下的数学模型。其次,针对矢量控制在单相系统无法直接实现的问题,介绍了几种传统的OSG算法的原理。然后,提出一种无延时正交电流虚构算法,并给出了无延时正交电流虚构算法实现框图。最后,对所提的算法与传统的OSG算法进行仿真和实验对比分析,仿真和实验结果均验证了所提算法的有效性和可行性。展开更多
文摘为解决传统有限集模型预测电流控制FCS-MPCC(finite-control-set model predictive current control)方法下开关频率不固定和网侧电流谐波大等问题,以单相PWM整流器为研究对象,研究了一种两矢量有限集模型预测电流控制TV-FCS-MPCC(two-vector-based finite-control-set model predictive current control)方法。该方法根据整流器的3种电压矢量进行扇区划分,并在每个开关周期内同时作用一个扇区内的2个边界矢量;结合电流误差评价函数,求解出各扇区边界电压矢量的最优作用时间;最后采用电流误差评价函数值最小的扇区边界矢量,并通过调制模块产生相应开关信号。为验证所提方法的正确性和有效性,在小功率实验平台上对该TV-FCS-MPCC与传统FCS-MPCC方法进行了实验对比研究,研究结果表明:TV-FCS-MPCC方法可以有效实现单相PWM整流器的控制目标,与传统FCS-MPCC方法相比,所提方法可以实现开关频率的固定,并降低网侧电流THD。
文摘以单相脉宽调制(pulse width modulation,PWM)变换器作为研究对象,以改善电流控制器的动态性能为目的,提出一种无延时控制方法。单相变换器传统矢量控制方法需要虚构正交电流分量,但传统正交信号发生器(orthogonal signal generator,OSG)在虚构出与单相电网电流正交的物理量时存在一定的延时,从而会恶化电流控制器的动态性能。针对虚构电流引起的延时问题,提出了一种无延时单相并网变换器电流控制方法。首先,建立了单相PWM变换器在dq旋转坐标系下的数学模型。其次,针对矢量控制在单相系统无法直接实现的问题,介绍了几种传统的OSG算法的原理。然后,提出一种无延时正交电流虚构算法,并给出了无延时正交电流虚构算法实现框图。最后,对所提的算法与传统的OSG算法进行仿真和实验对比分析,仿真和实验结果均验证了所提算法的有效性和可行性。