期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
基于多尺度融合SSD的小目标检测算法 被引量:31
1
作者 赵亚男 吴黎明 陈琦 《计算机工程》 CAS CSCD 北大核心 2020年第1期247-254,共8页
针对一阶段目标检测算法在识别小目标时无法兼顾精度与实时性的问题,提出一种基于多尺度融合单点多盒探测器(SSD)的小目标检测算法。以SSD和DSSD算法的网络结构为基础,设计融合模块以实现Top-Down结构的功能,形成高层网络与低层网络之... 针对一阶段目标检测算法在识别小目标时无法兼顾精度与实时性的问题,提出一种基于多尺度融合单点多盒探测器(SSD)的小目标检测算法。以SSD和DSSD算法的网络结构为基础,设计融合模块以实现Top-Down结构的功能,形成高层网络与低层网络之间的跳跃连接,结合SSD-VGG16扩展卷积特征图以提取多尺度特征,并对不同卷积层、尺度及特征的多元信息进行分类预测与位置回归。在织物瑕疵数据库上的实验结果表明,与SSD、DSSD等算法相比,该算法的检测性能较好,其检测精度达到78.2%,检测速度为51 frame/s,能在保证检测精度的同时提高检测速度。 展开更多
关键词 单点多盒探测器 多尺度融合 目标检测 小目标 VGG16网络结构
下载PDF
融合注意力机制与改进SSD算法的SAR舰船目标检测方法 被引量:11
2
作者 薛远亮 金国栋 +2 位作者 侯笑晗 谭力宁 许剑锟 《计算机应用研究》 CSCD 北大核心 2022年第1期265-269,共5页
针对单次多盒检测算法(SSD)对复杂背景下合成孔径雷达(SAR)图像舰船目标的检测容易出现误检或漏检情况,提出一种基于融合注意力机制与改进的SSD算法的目标检测方法。首先在SSD算法上引入ResNet网络并进行改进,以提供丰富的语义信息和细... 针对单次多盒检测算法(SSD)对复杂背景下合成孔径雷达(SAR)图像舰船目标的检测容易出现误检或漏检情况,提出一种基于融合注意力机制与改进的SSD算法的目标检测方法。首先在SSD算法上引入ResNet网络并进行改进,以提供丰富的语义信息和细节信息,提高算法的鲁棒性;其次融合通道和空间注意力增强对舰船目标的辨认能力,抑制海杂波等干扰信息;同时改进损失函数来解决舰船密集分布时的漏检问题,提高网络训练效果。数据集上的实验表明,该方法平均准确率(mAP)为87.6%,比SSD算法提高了4.2个百分点,目标的漏检和误检明显减少。相比SSD算法,该算法对复杂背景下的舰船目标有较好的辨别能力和鲁棒性,抗干扰能力有所提升。 展开更多
关键词 舰船目标检测 注意力机制 单次多盒检测算法 合成孔径雷达图像
下载PDF
基于改进SSD的视频行人目标检测 被引量:7
3
作者 赵九霄 刘毅 李国燕 《传感器与微系统》 CSCD 北大核心 2022年第1期146-149,156,共5页
针对基于视频行人检测的深度学习检测框架不能充分利用上下帧的运动信息,且计算复杂度较高的问题,提出一种改进的SSD检测框架。框架将SSD的基础特征提取网络VGG-16替换为改进的MobileNet,从而实现计算量的减少,并将GRU与改进的SSD结合... 针对基于视频行人检测的深度学习检测框架不能充分利用上下帧的运动信息,且计算复杂度较高的问题,提出一种改进的SSD检测框架。框架将SSD的基础特征提取网络VGG-16替换为改进的MobileNet,从而实现计算量的减少,并将GRU与改进的SSD结合以建立帧与帧之间的关联性。实验表明:与传统检测框架相比,所提方法有效提升了检测速度,并提升了检测准确率。 展开更多
关键词 深度学习 ssd 行人检测 运动信息
下载PDF
基于SSD算法的轻量化仪器表盘检测算法 被引量:2
4
作者 张建伟 周亚同 +2 位作者 史宝军 何昊 王文 《计算机工程与科学》 CSCD 北大核心 2022年第8期1418-1425,共8页
在使用传统的图像识别算法对仪器表盘中的数字进行识别时,存在着流程繁琐,处理时间较长和检测效果不佳等问题。针对上述不足,提出了一种基于深度学习的轻量化仪器表盘检测算法,该算法以单发多尺度检测算法为基础,使用深度可分离卷积代... 在使用传统的图像识别算法对仪器表盘中的数字进行识别时,存在着流程繁琐,处理时间较长和检测效果不佳等问题。针对上述不足,提出了一种基于深度学习的轻量化仪器表盘检测算法,该算法以单发多尺度检测算法为基础,使用深度可分离卷积代替标准卷积设计特征提取网络,以提升特征表达能力和轻量化性能;同时提出了一种基于真实框分布构建锚框的流程,设计了能量化表达锚框匹配程度的指标——匹配率,促进构建匹配度更高且锚框数量更少的锚框方案。实验结果表明,所提算法具有较少的模型参数量和计算量,具有较高的检测精度,并且可在CPU环境下满足实时检测需求。 展开更多
关键词 轻量化特征提取 锚框设计 智能仪表检测 单发多尺度检测算法
下载PDF
融合权重与卷积核删减的SSD网络压缩 被引量:1
5
作者 韩佳林 王琦琦 +2 位作者 杨国威 陈隽 王以忠 《计算机科学》 CSCD 北大核心 2019年第11期272-276,共5页
目标检测是计算机视觉领域中重要的研究方向。近几年,深度学习在基于视频的目标检测领域取得了突破性研究进展。深度学习强大的特征学习和特征表达能力,使其能够自动学习和提取相关特征并加以利用。然而,复杂的网络结构使得深度学习模... 目标检测是计算机视觉领域中重要的研究方向。近几年,深度学习在基于视频的目标检测领域取得了突破性研究进展。深度学习强大的特征学习和特征表达能力,使其能够自动学习和提取相关特征并加以利用。然而,复杂的网络结构使得深度学习模型具有参数规模大、计算需求高、占用存储空间大等问题。基于深度神经网络的单发多框检测器(Single-shot Multi-box Detector 300,SSD300)能够对视频中的目标进行实时检测,但无法移植到嵌入式设备或移动终端以满足实际应用中的需求。为了解决该问题,文中提出了一种权重删减和卷积核删减融合的方法。首先,针对深度卷积神经网络模型权重参数过多导致模型过大的问题,采用权重删减的方法移除各卷积层中的冗余权重,确定各层权重的稀疏度;然后,针对卷积层计算量大的问题,根据各卷积层中的权重稀疏度对冗余卷积核进行删减,以减少冗余参数和计算量;最后,对删减后的神经网络进行训练,以恢复其检测精度。为验证该方法的有效性,在卷积神经网络框架caffe平台上对SSD网络模型进行验证。结果表明,压缩加速后的SSD300网络模型的大小为12.5 MB,检测速度最高可达50 FPS(frames per second)。实验实现了在网络检测准确率下降尽量小的前提下,将SSD300网络压缩了8.4×,加速了2×。权重删减和卷积核删减融合的方法为SSD300网络在视频检测中的智能化应用提供了可行性方案。 展开更多
关键词 深度神经网络 单发多框检测器 网络压缩与加速 权重删减 卷积核删减
下载PDF
改进的R-SSD全景视频图像车辆检测算法 被引量:4
6
作者 王殿伟 赵梦影 +2 位作者 刘颖 宋海军 谢永军 《计算机工程与应用》 CSCD 北大核心 2021年第3期189-195,共7页
针对SSD算法在检测全景视频图像车辆目标时存在准确率低、漏检率高的问题,构建了一种改进的SSD网络,命名为R-SSD,并提出了一种基于R-SSD的全景视频图像中车辆目标检测算法。在原SSD网络之前增加了一个RPN*网络,目的在于过滤负样本先验... 针对SSD算法在检测全景视频图像车辆目标时存在准确率低、漏检率高的问题,构建了一种改进的SSD网络,命名为R-SSD,并提出了一种基于R-SSD的全景视频图像中车辆目标检测算法。在原SSD网络之前增加了一个RPN*网络,目的在于过滤负样本先验框并粗略调整先验框的位置和大小,为后续回归提供好的初始条件。在原SSD和RPN*网络之间构建了传输转换模块,实现两个网络间的特征融合,并增加低层特征信息,从而提高目标的检测效果。在同时兼顾了RPN*网络和SSD*网络损失函数的基础上提出了新的损失函数,应用了二分类和多分类的方法,使回归操作更加精确。将采集的全景视频图像数据分为训练集和测试集,通过对比实验,表明提出的R-SSD算法检测精度可达90.78%,明显优于SSD算法,可较好地解决全景目标车辆检测中误检率较高、漏检率较高等问题。 展开更多
关键词 全景车辆检测 ssd算法 特征融合 传输转换模块
下载PDF
用于ADAS实时目标车辆检测的改进SSD算法 被引量:3
7
作者 焦鑫 杨伟东 +2 位作者 刘全周 李占旗 贾鹏飞 《汽车安全与节能学报》 CAS CSCD 2020年第3期337-344,共8页
以实际交通场景中存在重叠小目标车辆为重点,为提升汽车辅助驾驶系统(ADAS)对目标车辆检测的准确性,建立了一种实时目标车辆检测改进算法SSD-P。该算法基于2种方法:1)通过增加小目标特征的提取数量,提出了一种浅层特征图像分辨率重建的... 以实际交通场景中存在重叠小目标车辆为重点,为提升汽车辅助驾驶系统(ADAS)对目标车辆检测的准确性,建立了一种实时目标车辆检测改进算法SSD-P。该算法基于2种方法:1)通过增加小目标特征的提取数量,提出了一种浅层特征图像分辨率重建的方法;2)在非极大抑制中嵌入特征向量进行二次判定方法,以克服单发多盒探测器(SSD)算法对小目标检测精度不高、重叠目标检测能力弱的问题。在PASCAL VOC2012数据集、虚拟交通场景以及实际交通场景中,进行了相关实验验证。结果表明:用该SSD-P算法进行目标车辆检测的平均精度(mAP)为92.4%,比改进前的SSD算法精度提升了4.8%。因此,该改进算法能够改善ADAS的准确性。 展开更多
关键词 汽车辅助驾驶系统(ADAS) 实时车辆检测 单发多盒探测器(ssd)算法 小目标 重叠目标
下载PDF
XSSD-P:改进的SSD行人检测算法 被引量:1
8
作者 鲍文斌 张冬泉 《计算机工程与应用》 CSCD 北大核心 2022年第23期132-141,共10页
SSD(single shot multi-box detector)是目前广泛应用于行人检测的神经网络算法,为了提高其检测精度和检测速度,对SSD算法进行了有效改进(改进后的算法称为XSSD-P)。选择Xception网络作为XSSD-P算法的骨干网络并重新选择用于预测的特征... SSD(single shot multi-box detector)是目前广泛应用于行人检测的神经网络算法,为了提高其检测精度和检测速度,对SSD算法进行了有效改进(改进后的算法称为XSSD-P)。选择Xception网络作为XSSD-P算法的骨干网络并重新选择用于预测的特征层;根据行人外形尺寸的特征设计了多尺度卷积核和基础锚框,并将二者耦合,基础锚框通过调节自身大小得到锚框(anchors)用于位置回归;再使用深度可分离卷积代替常规卷积在特征图上进行预测,实现了行人的有效检测。在INRIA数据集、VOC数据集和COCO数据集上进行检测精度对比测试,与SSD以及其他主流算法相比,XSSD-P算法在行人检测方面拥有更高的检测精度,并在Caltech行人数据集和MIT行人数据集中验证了XSSD-P算法的泛化性能。在检测速度方面,与SSD算法相比,XSSD-P算法的检测速度高出30 FPS,提高了42.86%。实验结果表明,XSSD-P的检测精度和检测速度均优于SSD算法。 展开更多
关键词 行人检测 ssd算法 卷积神经网络 多尺度卷积核 Xception网络
下载PDF
注意力机制改进轻量SSD模型的海面小目标检测 被引量:19
9
作者 贾可心 马正华 +1 位作者 朱蓉 李永刚 《中国图象图形学报》 CSCD 北大核心 2022年第4期1161-1175,共15页
目的海面目标检测图像中的小目标数量居多,而基于深度学习的目标检测方法通常针对通用目标数据集设计检测模型,对图像中的小目标检测效果并不理想。使用一般目标检测模型检测海面目标图像的特征时,通常会出现小目标漏检情况,而一些特定... 目的海面目标检测图像中的小目标数量居多,而基于深度学习的目标检测方法通常针对通用目标数据集设计检测模型,对图像中的小目标检测效果并不理想。使用一般目标检测模型检测海面目标图像的特征时,通常会出现小目标漏检情况,而一些特定的小目标检测模型对海面目标的检测效果还有待验证。为此,在标准的SSD(single shot multi Box detector)目标检测模型基础上,结合Xception深度可分卷积,提出一种轻量SSD模型用于海面目标检测。方法在标准的SSD目标检测模型基础上,使用基于Xception网络的深度可分卷积特征提取网络替换VGG-16(Visual Geometry Group network-16)骨干网络,通过控制变量来对比不同网络的检测效果;在特征提取网络中的exit flow层和Conv1层引入轻量级注意力机制模块来提高检测精度,并与在其他层引入轻量级注意力机制模块的模型进行检测效果对比;使用注意力机制改进的轻量SSD目标检测模型和其他几种模型分别对海面目标检测数据集中的小目标和正常目标进行测试。结果为证明本文模型的有效性,进行了多组对比实验。实验结果表明,模型轻量化导致特征表达能力降低,从而影响检测精度。相对于标准的SSD目标检测模型,本文模型在参数量降低16.26%、浮点运算量降低15.65%的情况下,浮标的平均检测精度提高了1.1%,漏检率减小了3%,平均精度均值(mean average precision,mAP)提高了0.51%,同时,保证了船的平均检测精度,并保证其漏检率不升高,在对数据集中的小目标进行测试时,本文模型也表现出较好的检测效果。结论本文提出的海面小目标检测模型,能够在压缩模型的同时,保证模型的检测速度和检测精度,达到网络轻量化的效果,并且降低了小目标的漏检率,可以有效实现对海面小目标的检测。 展开更多
关键词 深度学习 目标检测 注意力机制 深度可分卷积 ssd 海面小目标检测
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部