Designing catalysts with highly active,selectivity,and stability for electrocatalytic CO_(2)to formate is currently a severe challenge.Herein,we developed an electronic structure engineering on carbon nano frameworks ...Designing catalysts with highly active,selectivity,and stability for electrocatalytic CO_(2)to formate is currently a severe challenge.Herein,we developed an electronic structure engineering on carbon nano frameworks embedded with nitrogen and sulfur asymmetrically dual-coordinated indium active sites toward the efficient electrocatalytic CO_(2)reduction reaction.As expected,atomically dispersed In-based catalysts with In-S_(1)N_(3)atomic interface with asymmetrically coordinated exhibited high efficiency for CO_(2)reduction reaction(CO_(2)RR)to formate.It achieved a maximum Faradaic efficiency(FE)of 94.3%towards formate generation at−0.8 V vs.reversible hydrogen electrode(RHE),outperforming that of catalysts with In-S2N2 and In-N4 atomic interface.And at a potential of−1.10 V vs.RHE,In-S_(1)N_(3)achieves an impressive Faradaic efficiency of 93.7%in flow cell.The catalytic performance of In-S_(1)N_(3)sites was confirmed to be enhanced through in-situ X-ray absorption near-edge structure(XANES)measurements under electrochemical conditions.Our discovery provides the guidance for performance regulation of main group metal catalysts toward CO_(2)RR at atomic scale.展开更多
基金the Anhui Provincial Department of Education(No.KJ2021A1125)the National Natural Science Foundation of China(No.12374390)+1 种基金Ningbo 3315 Innovative Teams Program(No.2019A-14-C)the member of Youth Innovation Promotion Association Foundation of CAS,China(No.2023310).
文摘Designing catalysts with highly active,selectivity,and stability for electrocatalytic CO_(2)to formate is currently a severe challenge.Herein,we developed an electronic structure engineering on carbon nano frameworks embedded with nitrogen and sulfur asymmetrically dual-coordinated indium active sites toward the efficient electrocatalytic CO_(2)reduction reaction.As expected,atomically dispersed In-based catalysts with In-S_(1)N_(3)atomic interface with asymmetrically coordinated exhibited high efficiency for CO_(2)reduction reaction(CO_(2)RR)to formate.It achieved a maximum Faradaic efficiency(FE)of 94.3%towards formate generation at−0.8 V vs.reversible hydrogen electrode(RHE),outperforming that of catalysts with In-S2N2 and In-N4 atomic interface.And at a potential of−1.10 V vs.RHE,In-S_(1)N_(3)achieves an impressive Faradaic efficiency of 93.7%in flow cell.The catalytic performance of In-S_(1)N_(3)sites was confirmed to be enhanced through in-situ X-ray absorption near-edge structure(XANES)measurements under electrochemical conditions.Our discovery provides the guidance for performance regulation of main group metal catalysts toward CO_(2)RR at atomic scale.