Based on the high-dimensional(HD) chaotic maps and the sine function, a new methodology of designing new chaotic maps using dimension expansion is proposed. This method accepts N dimensions of any existing HD chaotic ...Based on the high-dimensional(HD) chaotic maps and the sine function, a new methodology of designing new chaotic maps using dimension expansion is proposed. This method accepts N dimensions of any existing HD chaotic map as inputs to generate new dimensions based on the combined results of those inputs. The main principle of the proposed method is to combine the results of the input dimensions, and then performs a sine-transformation on them to generate new dimensions.The characteristics of the generated dimensions are totally different compared to the input dimensions. Thus, both of the generated dimensions and the input dimensions are used to create a new HD chaotic map. An example is illustrated using one of the existing HD chaotic maps. Results show that the generated dimensions have better chaotic performance and higher complexity compared to the input dimensions. Results also show that, in the most cases, the generated dimensions can obtain robust chaos which makes them attractive to usage in a different practical application.展开更多
In this paper, we are concerned with the numerical solution of second-order partial differential equations. We analyse the use of the Sine Transform precondilioners for the solution of linear systems arising from the ...In this paper, we are concerned with the numerical solution of second-order partial differential equations. We analyse the use of the Sine Transform precondilioners for the solution of linear systems arising from the discretization of p.d.e. via the preconditioned conjugate gradient method. For the second-order partial differential equations with Dirichlel boundary conditions, we prove that the condition number of the preconditioned system is O(1) while the condition number of the original system is O(m 2) Here m is the number of interior gridpoints in each direction. Such condition number produces a linear convergence rale.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61161006 and 61573383)
文摘Based on the high-dimensional(HD) chaotic maps and the sine function, a new methodology of designing new chaotic maps using dimension expansion is proposed. This method accepts N dimensions of any existing HD chaotic map as inputs to generate new dimensions based on the combined results of those inputs. The main principle of the proposed method is to combine the results of the input dimensions, and then performs a sine-transformation on them to generate new dimensions.The characteristics of the generated dimensions are totally different compared to the input dimensions. Thus, both of the generated dimensions and the input dimensions are used to create a new HD chaotic map. An example is illustrated using one of the existing HD chaotic maps. Results show that the generated dimensions have better chaotic performance and higher complexity compared to the input dimensions. Results also show that, in the most cases, the generated dimensions can obtain robust chaos which makes them attractive to usage in a different practical application.
文摘In this paper, we are concerned with the numerical solution of second-order partial differential equations. We analyse the use of the Sine Transform precondilioners for the solution of linear systems arising from the discretization of p.d.e. via the preconditioned conjugate gradient method. For the second-order partial differential equations with Dirichlel boundary conditions, we prove that the condition number of the preconditioned system is O(1) while the condition number of the original system is O(m 2) Here m is the number of interior gridpoints in each direction. Such condition number produces a linear convergence rale.