针对线段因遮挡、断裂以及端点提取不准确等原因造成的线段特征匹配困难问题,特别是现有匹配算法在匹配过程中出现"多配多"时直接采取"最相似匹配"而导致丢失大量真实匹配的问题,提出了一种基于多重几何约束及0-1...针对线段因遮挡、断裂以及端点提取不准确等原因造成的线段特征匹配困难问题,特别是现有匹配算法在匹配过程中出现"多配多"时直接采取"最相似匹配"而导致丢失大量真实匹配的问题,提出了一种基于多重几何约束及0-1规划的线段特征匹配算法。首先,基于校正后视频帧间线段特征的空间相邻性计算线段匹配的初始候选集;然后,基于极线约束、单应矩阵模型约束以及点-线相邻性约束等多重几何约束,对候选集进行筛选从而剔除部分错误匹配;其次,将线段匹配问题建模为一个大规模0-1规划问题;最后,设计了一种基于分组策略的两阶段求解算法对该问题进行求解,从而实现线段特征的"一配一"精确匹配。实验结果表明,该算法与LS(Line Sigature)、LJL(LineJunction-Line)方法相比,匹配正确率接近,但匹配线段数量分别提高了60%和11%。所提算法可以实现视频帧间的线段特征匹配,为基于线特征的视觉SLAM(Simultaneously Localization and Mapping)奠定基础。展开更多
环境感知与地下空间导航是煤矿智能化信息领域的重要研究方向,对实现无人化、全自动化、智能化的煤矿生产作业至关重要。随着第五代移动通信技术(5th generation mobile networks,5G)和毫米波成像雷达软硬件日益紧密结合与成熟,毫米波...环境感知与地下空间导航是煤矿智能化信息领域的重要研究方向,对实现无人化、全自动化、智能化的煤矿生产作业至关重要。随着第五代移动通信技术(5th generation mobile networks,5G)和毫米波成像雷达软硬件日益紧密结合与成熟,毫米波探测与通讯应用到更多领域。5G通讯技术依托高速率、低延时、高带宽的特点给现有的无线电通讯技术带来巨大的变革;同时,毫米波雷达相比激光雷达,低成本、抗干扰、三维点云(3 dimension point cloud,3D)数量相对激光点云数量少1~2个数量级的特点,使得其在地下环境3D成像及同步定位与地图构建(Simultaneous Localization and Mapping,SLAM)领域得到越来越多的关注。基于5G通讯的V2X(Vehicle to Everything)技术结合毫米波SLAM导航,为煤矿机器人的自主导航提供新的解决方案。系统综述了当下煤矿机器人自主导航以及实现煤矿智能化所面临的问题;近期国内外毫米波成像最新进展;地下环境毫米波雷达模块组通讯与信号获取方法;高分辨率成像遇到的稀疏特征提取问题;稀疏点云的处理策略与算法评估;深度学习在毫米波稀疏点云处理中的研究现状与发展方向;SLAM算法应用于不同环境的研究现状及SLAM导航算法。归纳了煤矿地下环境中应用SLAM地图构建、路径规划及避障的困难和挑战,并对未来煤矿复杂环境下毫米波通讯与导航兼容并蓄的新应用提出了展望。展开更多
基于同步定位与制图(simultaneous localization and mapping,SLAM)技术的激光扫描系统具有成本低、效率高的优点,近年来在测绘领域得到了广泛关注。虽然基于SLAM技术的激光扫描系统能够实现实时数据获取,但该数据获取方式难以保证点云...基于同步定位与制图(simultaneous localization and mapping,SLAM)技术的激光扫描系统具有成本低、效率高的优点,近年来在测绘领域得到了广泛关注。虽然基于SLAM技术的激光扫描系统能够实现实时数据获取,但该数据获取方式难以保证点云精度,不同位置获取的同一地物的点云存在位置不一致。为了提高该类系统所获点云精度,本文提出一种分层次点云全局优化方法。该方法首先通过"点-切平面"迭代最近邻算法对重叠点云进行配准,形成扫描系统轨迹间的约束;然后构建位姿图对轨迹进行优化,利用优化后的轨迹对点云进行修正。算法通过将优化过程分解为局部和整体两个层次以提高计算效率。试验结果表明,优化后点云同名点对间的距离中误差减小约50%,内部不一致现象得到有效消除。展开更多
针对单目视觉SLAM(同时定位与地图构建)算法没有尺度信息以及在相机移动过快时无法使用的问题,提出了一种IMU(惯性测量单元)/磁力传感器与单目视觉融合的SLAM方法.首先,提出了一种模糊自适应的九轴姿态融合算法,对IMU的航向角进行高精...针对单目视觉SLAM(同时定位与地图构建)算法没有尺度信息以及在相机移动过快时无法使用的问题,提出了一种IMU(惯性测量单元)/磁力传感器与单目视觉融合的SLAM方法.首先,提出了一种模糊自适应的九轴姿态融合算法,对IMU的航向角进行高精度估计.然后,采用单目ORB-SLAM2(oriented FAST and rotated BRIEF SLAM2)算法,通过IMU估计其尺度因子,并对其输出的位姿信息进行尺度转换.最后,采用松耦合方式,对IMU估计的位姿和ORB-SLAM2算法经过尺度转换后的位姿,进行卡尔曼滤波融合.在公开数据集EuRoC上进行了测试,测试结果表明本文方法总的位置均方根误差为5.73 cm.为了进一步在实际环境中验证,设计了全向移动平台,以平台上激光雷达所测的位姿数据为基准,测试结果表明本文方法的旋转角度误差小于5?,总的位置均方根误差为9.76 cm.展开更多
即时定位与地图构建(simultaneous localization and mapping,SLAM)是自主移动机器人和自动驾驶的关键技术之一,而激光雷达则是支撑SLAM算法运行的重要传感器。基于激光雷达的SLAM算法,对激光雷达SLAM总体框架进行介绍,详细阐述前端里...即时定位与地图构建(simultaneous localization and mapping,SLAM)是自主移动机器人和自动驾驶的关键技术之一,而激光雷达则是支撑SLAM算法运行的重要传感器。基于激光雷达的SLAM算法,对激光雷达SLAM总体框架进行介绍,详细阐述前端里程计、后端优化、回环检测、地图构建模块的作用并总结所使用的算法;按由2D到3D,单传感器到多传感器融合的顺序,对经典的具有代表性的开源算法进行描述和梳理归纳;介绍常用的开源数据集,以及精度评价指标和测评工具;从深度学习、多传感器融合、多机协同和鲁棒性研究四个维度对激光雷达SLAM技术的发展趋势进行展望。展开更多
文摘针对线段因遮挡、断裂以及端点提取不准确等原因造成的线段特征匹配困难问题,特别是现有匹配算法在匹配过程中出现"多配多"时直接采取"最相似匹配"而导致丢失大量真实匹配的问题,提出了一种基于多重几何约束及0-1规划的线段特征匹配算法。首先,基于校正后视频帧间线段特征的空间相邻性计算线段匹配的初始候选集;然后,基于极线约束、单应矩阵模型约束以及点-线相邻性约束等多重几何约束,对候选集进行筛选从而剔除部分错误匹配;其次,将线段匹配问题建模为一个大规模0-1规划问题;最后,设计了一种基于分组策略的两阶段求解算法对该问题进行求解,从而实现线段特征的"一配一"精确匹配。实验结果表明,该算法与LS(Line Sigature)、LJL(LineJunction-Line)方法相比,匹配正确率接近,但匹配线段数量分别提高了60%和11%。所提算法可以实现视频帧间的线段特征匹配,为基于线特征的视觉SLAM(Simultaneously Localization and Mapping)奠定基础。
文摘环境感知与地下空间导航是煤矿智能化信息领域的重要研究方向,对实现无人化、全自动化、智能化的煤矿生产作业至关重要。随着第五代移动通信技术(5th generation mobile networks,5G)和毫米波成像雷达软硬件日益紧密结合与成熟,毫米波探测与通讯应用到更多领域。5G通讯技术依托高速率、低延时、高带宽的特点给现有的无线电通讯技术带来巨大的变革;同时,毫米波雷达相比激光雷达,低成本、抗干扰、三维点云(3 dimension point cloud,3D)数量相对激光点云数量少1~2个数量级的特点,使得其在地下环境3D成像及同步定位与地图构建(Simultaneous Localization and Mapping,SLAM)领域得到越来越多的关注。基于5G通讯的V2X(Vehicle to Everything)技术结合毫米波SLAM导航,为煤矿机器人的自主导航提供新的解决方案。系统综述了当下煤矿机器人自主导航以及实现煤矿智能化所面临的问题;近期国内外毫米波成像最新进展;地下环境毫米波雷达模块组通讯与信号获取方法;高分辨率成像遇到的稀疏特征提取问题;稀疏点云的处理策略与算法评估;深度学习在毫米波稀疏点云处理中的研究现状与发展方向;SLAM算法应用于不同环境的研究现状及SLAM导航算法。归纳了煤矿地下环境中应用SLAM地图构建、路径规划及避障的困难和挑战,并对未来煤矿复杂环境下毫米波通讯与导航兼容并蓄的新应用提出了展望。
文摘基于同步定位与制图(simultaneous localization and mapping,SLAM)技术的激光扫描系统具有成本低、效率高的优点,近年来在测绘领域得到了广泛关注。虽然基于SLAM技术的激光扫描系统能够实现实时数据获取,但该数据获取方式难以保证点云精度,不同位置获取的同一地物的点云存在位置不一致。为了提高该类系统所获点云精度,本文提出一种分层次点云全局优化方法。该方法首先通过"点-切平面"迭代最近邻算法对重叠点云进行配准,形成扫描系统轨迹间的约束;然后构建位姿图对轨迹进行优化,利用优化后的轨迹对点云进行修正。算法通过将优化过程分解为局部和整体两个层次以提高计算效率。试验结果表明,优化后点云同名点对间的距离中误差减小约50%,内部不一致现象得到有效消除。
文摘针对单目视觉SLAM(同时定位与地图构建)算法没有尺度信息以及在相机移动过快时无法使用的问题,提出了一种IMU(惯性测量单元)/磁力传感器与单目视觉融合的SLAM方法.首先,提出了一种模糊自适应的九轴姿态融合算法,对IMU的航向角进行高精度估计.然后,采用单目ORB-SLAM2(oriented FAST and rotated BRIEF SLAM2)算法,通过IMU估计其尺度因子,并对其输出的位姿信息进行尺度转换.最后,采用松耦合方式,对IMU估计的位姿和ORB-SLAM2算法经过尺度转换后的位姿,进行卡尔曼滤波融合.在公开数据集EuRoC上进行了测试,测试结果表明本文方法总的位置均方根误差为5.73 cm.为了进一步在实际环境中验证,设计了全向移动平台,以平台上激光雷达所测的位姿数据为基准,测试结果表明本文方法的旋转角度误差小于5?,总的位置均方根误差为9.76 cm.
文摘即时定位与地图构建(simultaneous localization and mapping,SLAM)是自主移动机器人和自动驾驶的关键技术之一,而激光雷达则是支撑SLAM算法运行的重要传感器。基于激光雷达的SLAM算法,对激光雷达SLAM总体框架进行介绍,详细阐述前端里程计、后端优化、回环检测、地图构建模块的作用并总结所使用的算法;按由2D到3D,单传感器到多传感器融合的顺序,对经典的具有代表性的开源算法进行描述和梳理归纳;介绍常用的开源数据集,以及精度评价指标和测评工具;从深度学习、多传感器融合、多机协同和鲁棒性研究四个维度对激光雷达SLAM技术的发展趋势进行展望。