极化(Polar)编码协作可同时获得编码增益与分集增益,实现可靠通信。为了解决中继能量受限问题,本文研究了基于无线信息与能量同传(Simultaneous Wireless Information and Power Transfer,SWIPT)技术的Polar编码协作系统。首先,建立了基...极化(Polar)编码协作可同时获得编码增益与分集增益,实现可靠通信。为了解决中继能量受限问题,本文研究了基于无线信息与能量同传(Simultaneous Wireless Information and Power Transfer,SWIPT)技术的Polar编码协作系统。首先,建立了基于SWIPT的Polar编码协作系统模型。其次,鉴于Polar码的Plotkin构造方法将一个长码分裂成两个短码,非常适用于编码协作场景,使用Plotkin构造方法联合设计信源节点和中继节点Polar码,并在目的节点对其进行联合串行相消(Successive Cancellation,SC)译码。相比传统点对点系统,基于SWIPT的Polar编码协作系统使得系统中断概率大幅度降低;与随机低密度奇偶校验(Low Density Parity Check,LDPC)编码协作系统相比,在译码迭代次数低时所提方案误码性能更佳。展开更多
文摘极化(Polar)编码协作可同时获得编码增益与分集增益,实现可靠通信。为了解决中继能量受限问题,本文研究了基于无线信息与能量同传(Simultaneous Wireless Information and Power Transfer,SWIPT)技术的Polar编码协作系统。首先,建立了基于SWIPT的Polar编码协作系统模型。其次,鉴于Polar码的Plotkin构造方法将一个长码分裂成两个短码,非常适用于编码协作场景,使用Plotkin构造方法联合设计信源节点和中继节点Polar码,并在目的节点对其进行联合串行相消(Successive Cancellation,SC)译码。相比传统点对点系统,基于SWIPT的Polar编码协作系统使得系统中断概率大幅度降低;与随机低密度奇偶校验(Low Density Parity Check,LDPC)编码协作系统相比,在译码迭代次数低时所提方案误码性能更佳。