A vortex is intuitively recognized as the rotational/swirling motion of fluids,but a rigorous and universally-accepted definition is still not available.Vorticity tube/filament has been regarded equivalent to a vortex...A vortex is intuitively recognized as the rotational/swirling motion of fluids,but a rigorous and universally-accepted definition is still not available.Vorticity tube/filament has been regarded equivalent to a vortex since Helmholtz proposed the concepts of vorticity tube/filament in 1858 and the vorticity-based methods can be categorized as the first generation of vortex identification methods.During the last three decades,a lot of vortex identification methods,including 0,A,and Aci criteria,have been proposed to overcome the problems associated with the vorticity-based methods.Most of these criteria are based on the Cauchy-Stokes decomposition and/or eigenvalues of the velocity gradient tensor and can be considered as the second generation of vortex identification methods.Starting from 2014,the Vortex and Turbulence Research Team at the University of Texas at Arlington(the UTA team)focus on the development of a new generation of vortex identification methods.The first fruit of this effort,a new Omega(/2)vortex identification method,which defined a vortex as a connected region where the vorticity overtakes the deformation,was published in 2016.In 2017 and 2018,a Liutex(previously called Rortex)vector was proposed to provide a mathematical definition of the local rigid rotation part of the fluid motion,including both the local rotational axis and the rotational strength.Liutex/Rortex is a new physical quantity with scalar,vector and tensor forms exactly representing the local rigid rotation of fluids.Meanwhile,a decomposition of the vorticity to a rotational part namely Liutex/Rortex and an anti-symmetric shear part(RS decomposition)was introduced in 2018,and a universal decomposition of the velocity gradient tensor to a rotation part(7?)and a non-rotation part(NR、was also given in 2018 as a counterpart of the traditional Cauchy-Stokes decomposition.Later in early 2019,a Liutex/Rortex based Omega method called Omega-Liutex,which combines the respective advantages of both Liutex/Rortex and Omega methods,was dev展开更多
基于专业计算流体动力学软件平台FLUENT6提供的标准k?ε等多种湍流模型对大气边界层中的TTU(Texas Tech University Building Model)标准低矮建筑的定常风场进行了数值模拟,并将计算结果与场地实测数据及同济大学TJ-2风洞试验结果进行...基于专业计算流体动力学软件平台FLUENT6提供的标准k?ε等多种湍流模型对大气边界层中的TTU(Texas Tech University Building Model)标准低矮建筑的定常风场进行了数值模拟,并将计算结果与场地实测数据及同济大学TJ-2风洞试验结果进行了比较。结果表明,多种湍流模型均能为工程应用提供有效参考,且对于此种体形简单的建筑复杂的雷诺应力模型的预测结果并不优于简单的涡粘模型,这为钝体绕流现象的数值模拟研究提供了有利依据。展开更多
文摘A vortex is intuitively recognized as the rotational/swirling motion of fluids,but a rigorous and universally-accepted definition is still not available.Vorticity tube/filament has been regarded equivalent to a vortex since Helmholtz proposed the concepts of vorticity tube/filament in 1858 and the vorticity-based methods can be categorized as the first generation of vortex identification methods.During the last three decades,a lot of vortex identification methods,including 0,A,and Aci criteria,have been proposed to overcome the problems associated with the vorticity-based methods.Most of these criteria are based on the Cauchy-Stokes decomposition and/or eigenvalues of the velocity gradient tensor and can be considered as the second generation of vortex identification methods.Starting from 2014,the Vortex and Turbulence Research Team at the University of Texas at Arlington(the UTA team)focus on the development of a new generation of vortex identification methods.The first fruit of this effort,a new Omega(/2)vortex identification method,which defined a vortex as a connected region where the vorticity overtakes the deformation,was published in 2016.In 2017 and 2018,a Liutex(previously called Rortex)vector was proposed to provide a mathematical definition of the local rigid rotation part of the fluid motion,including both the local rotational axis and the rotational strength.Liutex/Rortex is a new physical quantity with scalar,vector and tensor forms exactly representing the local rigid rotation of fluids.Meanwhile,a decomposition of the vorticity to a rotational part namely Liutex/Rortex and an anti-symmetric shear part(RS decomposition)was introduced in 2018,and a universal decomposition of the velocity gradient tensor to a rotation part(7?)and a non-rotation part(NR、was also given in 2018 as a counterpart of the traditional Cauchy-Stokes decomposition.Later in early 2019,a Liutex/Rortex based Omega method called Omega-Liutex,which combines the respective advantages of both Liutex/Rortex and Omega methods,was dev
文摘基于专业计算流体动力学软件平台FLUENT6提供的标准k?ε等多种湍流模型对大气边界层中的TTU(Texas Tech University Building Model)标准低矮建筑的定常风场进行了数值模拟,并将计算结果与场地实测数据及同济大学TJ-2风洞试验结果进行了比较。结果表明,多种湍流模型均能为工程应用提供有效参考,且对于此种体形简单的建筑复杂的雷诺应力模型的预测结果并不优于简单的涡粘模型,这为钝体绕流现象的数值模拟研究提供了有利依据。