期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于简化脉冲耦合神经网络和改进稀疏表示的脑部图像融合算法
1
作者 张亚加 邱啟蒙 +1 位作者 高智强 邵建龙 《光电子.激光》 CAS CSCD 北大核心 2022年第11期1225-1232,共8页
为解决单一模态脑部图像存在的局限性,进一步突出细节特征,增强视觉效果,提出一个基于多尺度边缘保持分解和改进稀疏表示(improved sparse representation,ISR)的算法框架。首先,分解源图像获得高频子带和低频子带。其次,采用多范数加... 为解决单一模态脑部图像存在的局限性,进一步突出细节特征,增强视觉效果,提出一个基于多尺度边缘保持分解和改进稀疏表示(improved sparse representation,ISR)的算法框架。首先,分解源图像获得高频子带和低频子带。其次,采用多范数加权度量改进的稀疏表示融合低频子带,以多尺度形态学梯度(multiscale morphological gradient,MSMG)改进的引导滤波器去除细节特征;同时,经简化的脉冲耦合神经网络(simplified pulseoupled neural network,SPCNN)融合其高频子带。最后,逆变换得到融合后的脑部图像。实验证明,本文在边缘信息的保护,融合效率的提高,时间成本的节约等方面优势显著。 展开更多
关键词 简化脉冲耦合神经网络(spcnn) 改进稀疏表示(ISR) 多尺度边缘保持分解 多尺度形态学梯度(MSMG) 多范数加权度量
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部