期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
一种潜在信息约束的非负矩阵分解方法
被引量:
2
1
作者
高新波
王笛
王秀美
《数据采集与处理》
CSCD
北大核心
2014年第1期11-18,共8页
传统的非负矩阵分解方法没有充分利用数据间的内在相似性,从而影响了算法的性能。为此,本文提出一种潜在信息约束的非负矩阵分解方法。该方法首先利用迭代最近邻方法挖掘原始数据的潜在信息,然后利用潜在信息构造数据之间的相似图,最后...
传统的非负矩阵分解方法没有充分利用数据间的内在相似性,从而影响了算法的性能。为此,本文提出一种潜在信息约束的非负矩阵分解方法。该方法首先利用迭代最近邻方法挖掘原始数据的潜在信息,然后利用潜在信息构造数据之间的相似图,最后将相似图作为约束项求得非负矩阵的最优分解。相似图的约束使得非负矩阵分解在降维过程中保持了原始数据之间的相似性关系,进而提高了非负矩阵分解的判别能力。图像聚类实验结果表明了该方法的有效性。
展开更多
关键词
数据降维
非负矩阵分解
潜在信息
相似图
迭代最近邻
下载PDF
职称材料
题名
一种潜在信息约束的非负矩阵分解方法
被引量:
2
1
作者
高新波
王笛
王秀美
机构
西安电子科技大学电子工程学院
出处
《数据采集与处理》
CSCD
北大核心
2014年第1期11-18,共8页
基金
国家杰出青年科学基金(61125204)资助项目
国家自然科学基金(61172146
+1 种基金
61100158)资助项目
陕西省重点科技创新团队(2012KCT-02)资助项目
文摘
传统的非负矩阵分解方法没有充分利用数据间的内在相似性,从而影响了算法的性能。为此,本文提出一种潜在信息约束的非负矩阵分解方法。该方法首先利用迭代最近邻方法挖掘原始数据的潜在信息,然后利用潜在信息构造数据之间的相似图,最后将相似图作为约束项求得非负矩阵的最优分解。相似图的约束使得非负矩阵分解在降维过程中保持了原始数据之间的相似性关系,进而提高了非负矩阵分解的判别能力。图像聚类实验结果表明了该方法的有效性。
关键词
数据降维
非负矩阵分解
潜在信息
相似图
迭代最近邻
Keywords
dimensionality
reduction
nonnegative
matrix
factorization
potential
information
similarity
graph
iterative
nearest
neighbor
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
一种潜在信息约束的非负矩阵分解方法
高新波
王笛
王秀美
《数据采集与处理》
CSCD
北大核心
2014
2
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部