为改进、补充现有表征方法,提出通过化学处理分离分散相单独表征的新手段。采用浓硝酸消解Ag Sn O2,对分离得到的Sn O2称重,滤液使用ICP测定杂质含量,实现了Ag Sn O2含量的快速测定。测定结果显示,Sn O2的含量为(11.2±0.3)%,相对...为改进、补充现有表征方法,提出通过化学处理分离分散相单独表征的新手段。采用浓硝酸消解Ag Sn O2,对分离得到的Sn O2称重,滤液使用ICP测定杂质含量,实现了Ag Sn O2含量的快速测定。测定结果显示,Sn O2的含量为(11.2±0.3)%,相对标准偏差为1.18%,与标称含量一致,具有良好的准确性和稳定性。同时,采用XRD、SEM、TEM等方法表征了Sn O2颗粒的微结构,并通过粒度分析测得Sn O2尺寸为D0.5=1.151μm,实现了对分散相Sn O2的独立全面表征。该方法快速有效,对分散相的表征准确全面,为金属基复合材料中分散相的快速全面表征开拓了思路。展开更多
采用反应合成技术和传统粉末冶金技术制备银氧化锡 (Ag Sn O2 )电接触材料。利用千瓦 CO2 激光器模仿电弧作用在试样表面产生局部熔化 ,对 Ag Sn O2 块体材料进行抗熔蚀性测试。对 Ag Sn O2 块体材料进行电导率测试和 X射线衍射分析 ,...采用反应合成技术和传统粉末冶金技术制备银氧化锡 (Ag Sn O2 )电接触材料。利用千瓦 CO2 激光器模仿电弧作用在试样表面产生局部熔化 ,对 Ag Sn O2 块体材料进行抗熔蚀性测试。对 Ag Sn O2 块体材料进行电导率测试和 X射线衍射分析 ,对块体材料及冷拉拔的 Ag Sn O2 线材进行显微组织分析 (扫描电镜、透射电镜 )。研究结果表明 ,采用反应合成技术可以在银基体中合成尺寸细小、界面新鲜的 Sn O2 颗粒 ,所制备的 Ag Sn O2 电接触材料中 ,微米级的 Sn O2 颗粒系由纳米级的 Sn O2 颗粒聚集而成 ;反应合成法制备的 Ag Sn O2 电接触材料较传统粉末冶金法制备的 Ag Sn O2 电接触材料具有更高的导电性和抗熔蚀性 ;该方法制备的 Ag Sn O2 电接触材料由于改变了 Ag、Sn O2 的结合状态使材料的加工性能。展开更多
Silver-tin oxide composite powders and silver powders were synthesized by hydrothermal method using NH3 to complex Ag+, SO 32?to reduce Ag (NH3)+2 and Na2SnO3 as the source of tin. The powders were characterized by XR...Silver-tin oxide composite powders and silver powders were synthesized by hydrothermal method using NH3 to complex Ag+, SO 32?to reduce Ag (NH3)+2 and Na2SnO3 as the source of tin. The powders were characterized by XRD, SEM and EDX. The results show that there are macroscopic and microscopic differences between two kinds of powders. Spherical silver powders are 3 μm in diameter, and silver-tin oxide composite powders are mainly flake of about 0.3 μm in thickness. Silver crystal in silver-tin oxide composite powders is preferentially oriented in the (111) crystallographic direction and its oriented index is 2.581. Crystal lattice parameter of silver crystal of silver tin-oxide composite powders is 0.409 34 nm, larger than 0.408 68 nm of silver powders. The XPS analysis shows that silver in silver-tin oxide composite powders is metallic silver and tin oxide in silver tin-oxide composite powders has the red shift for Sn4+(3d5/2) and O2-(1s).展开更多
Silver tin oxide composite powders were synthesized by the hydrothermal method with a silver ammine solution and a Na2SnO3 solution as raw materials. H2C2O4 was used as the co-precipitator of silver ions and tin ions....Silver tin oxide composite powders were synthesized by the hydrothermal method with a silver ammine solution and a Na2SnO3 solution as raw materials. H2C2O4 was used as the co-precipitator of silver ions and tin ions. The co-precipitation conditions were investigated. The results show that the co-precipitate of Ag2C2O4 and Sn(OH)4 is available when the pH value of the solution is 4.27-8.36. Using the obtained precipitate as precursor,the reduction of Ag+ and the crystallization of tin oxide were carried out simultaneously by the hydrothermal method and silver tin oxide composite powders were obtained. The composite powders were characterized by X-ray diffraction (XRD) analysis,scanning electron microscope (SEM),and energy spectrum analysis. The results show that the silver tin oxide composite powders are small with a diameter of about 2 μm and with homogeneous distribution of tin.展开更多
文摘为改进、补充现有表征方法,提出通过化学处理分离分散相单独表征的新手段。采用浓硝酸消解Ag Sn O2,对分离得到的Sn O2称重,滤液使用ICP测定杂质含量,实现了Ag Sn O2含量的快速测定。测定结果显示,Sn O2的含量为(11.2±0.3)%,相对标准偏差为1.18%,与标称含量一致,具有良好的准确性和稳定性。同时,采用XRD、SEM、TEM等方法表征了Sn O2颗粒的微结构,并通过粒度分析测得Sn O2尺寸为D0.5=1.151μm,实现了对分散相Sn O2的独立全面表征。该方法快速有效,对分散相的表征准确全面,为金属基复合材料中分散相的快速全面表征开拓了思路。
文摘采用反应合成技术和传统粉末冶金技术制备银氧化锡 (Ag Sn O2 )电接触材料。利用千瓦 CO2 激光器模仿电弧作用在试样表面产生局部熔化 ,对 Ag Sn O2 块体材料进行抗熔蚀性测试。对 Ag Sn O2 块体材料进行电导率测试和 X射线衍射分析 ,对块体材料及冷拉拔的 Ag Sn O2 线材进行显微组织分析 (扫描电镜、透射电镜 )。研究结果表明 ,采用反应合成技术可以在银基体中合成尺寸细小、界面新鲜的 Sn O2 颗粒 ,所制备的 Ag Sn O2 电接触材料中 ,微米级的 Sn O2 颗粒系由纳米级的 Sn O2 颗粒聚集而成 ;反应合成法制备的 Ag Sn O2 电接触材料较传统粉末冶金法制备的 Ag Sn O2 电接触材料具有更高的导电性和抗熔蚀性 ;该方法制备的 Ag Sn O2 电接触材料由于改变了 Ag、Sn O2 的结合状态使材料的加工性能。
文摘Silver-tin oxide composite powders and silver powders were synthesized by hydrothermal method using NH3 to complex Ag+, SO 32?to reduce Ag (NH3)+2 and Na2SnO3 as the source of tin. The powders were characterized by XRD, SEM and EDX. The results show that there are macroscopic and microscopic differences between two kinds of powders. Spherical silver powders are 3 μm in diameter, and silver-tin oxide composite powders are mainly flake of about 0.3 μm in thickness. Silver crystal in silver-tin oxide composite powders is preferentially oriented in the (111) crystallographic direction and its oriented index is 2.581. Crystal lattice parameter of silver crystal of silver tin-oxide composite powders is 0.409 34 nm, larger than 0.408 68 nm of silver powders. The XPS analysis shows that silver in silver-tin oxide composite powders is metallic silver and tin oxide in silver tin-oxide composite powders has the red shift for Sn4+(3d5/2) and O2-(1s).
文摘Silver tin oxide composite powders were synthesized by the hydrothermal method with a silver ammine solution and a Na2SnO3 solution as raw materials. H2C2O4 was used as the co-precipitator of silver ions and tin ions. The co-precipitation conditions were investigated. The results show that the co-precipitate of Ag2C2O4 and Sn(OH)4 is available when the pH value of the solution is 4.27-8.36. Using the obtained precipitate as precursor,the reduction of Ag+ and the crystallization of tin oxide were carried out simultaneously by the hydrothermal method and silver tin oxide composite powders were obtained. The composite powders were characterized by X-ray diffraction (XRD) analysis,scanning electron microscope (SEM),and energy spectrum analysis. The results show that the silver tin oxide composite powders are small with a diameter of about 2 μm and with homogeneous distribution of tin.