Here,we reply to comments by Valentic et al.on our paper published in Electrochimica Acta(2014,130:279).They commented that Au nanoparticles played the dominant role on the whole cell's performances in our improve...Here,we reply to comments by Valentic et al.on our paper published in Electrochimica Acta(2014,130:279).They commented that Au nanoparticles played the dominant role on the whole cell's performances in our improved graphene/Si solar cell.We argued that our devices are Au-doped graphene/n-Si Schottky barrier devices,not Au nanoparticles(film)/n-Si Schottky barrier devices.During the doping process,most of the Au nanopatricles covered the surfaces of the graphene.Schottky barriers between doped graphene and n-Si dominate the total cells properties.Through doping,by adjusting and tailoring the Fermi level of the graphene,the Fermi level of n-Si can be shifted down in the graphene/Si Schottky barrier cell.They also argued that the instability of our devices were related to variation in series resistance reduced at the beginning due to slightly lowered Fermi level and increased at the end by the serf-compensation by deep in-diffusion of Au nanoparticles.But for our fabricated devices,we know that an oxide layer covered the Si surface,which makes it difficult for the Au ions to diffuse into the Si layer,due to the continuous growth of SiO2 layer on the Si surface which resulted in series resistance decreasing at first and increasing in the end.展开更多
The influence of technological process parameters (aiming angle and implantation energy) on the distributions of dopant concentrations in a silicon substrate is investigated by computer modeling.
目的对比研究海水环境下Ti N及Ti Si N涂层与Al2O3对磨的摩擦磨损行为。方法采用多弧离子镀技术在316L不锈钢及单晶硅片上制备Ti N及Ti Si N涂层。利用场发射扫描电子显微镜(SEM)、X射线衍射仪(XRD)及X射线光电子能谱仪(XPS)分析了涂层...目的对比研究海水环境下Ti N及Ti Si N涂层与Al2O3对磨的摩擦磨损行为。方法采用多弧离子镀技术在316L不锈钢及单晶硅片上制备Ti N及Ti Si N涂层。利用场发射扫描电子显微镜(SEM)、X射线衍射仪(XRD)及X射线光电子能谱仪(XPS)分析了涂层的截面形貌及化学组织成分。选择纳米压痕仪测量了Ti N及Ti Si N涂层的硬度及弹性模量,使用UMT-3往复式摩擦试验机研究了人工模拟海水环境下Al2O3与Ti N及Ti Si N涂层对磨后的摩擦磨损行为,并采用扫描电镜(SEM)、电子能谱(EDS)及表面轮廓仪来深入分析了磨痕的摩擦磨损情况。结果研究表明,Ti N涂层的硬度为32.5 GPa,当Si元素掺入涂层以后,Ti Si N涂层的硬度提高到了37 GPa。同时,较之于Ti N涂层,Ti Si N涂层的腐蚀电流密度下降了一个数量级。在摩擦实验中,Ti N涂层的摩擦系数和磨损率分别为0.35和5.21×10-6 mm3/(N·m),而Ti Si N涂层的摩擦系数和磨损率均有明显下降,分别为0.24和1.96×10-6 mm3/(N·m)。结论 Si元素掺杂后能显著提高Ti N涂层在海水环境下的摩擦学性能,主要归因于结构的致密,硬度、韧性、抗腐蚀性的提高及润滑相的形成。展开更多
文摘Here,we reply to comments by Valentic et al.on our paper published in Electrochimica Acta(2014,130:279).They commented that Au nanoparticles played the dominant role on the whole cell's performances in our improved graphene/Si solar cell.We argued that our devices are Au-doped graphene/n-Si Schottky barrier devices,not Au nanoparticles(film)/n-Si Schottky barrier devices.During the doping process,most of the Au nanopatricles covered the surfaces of the graphene.Schottky barriers between doped graphene and n-Si dominate the total cells properties.Through doping,by adjusting and tailoring the Fermi level of the graphene,the Fermi level of n-Si can be shifted down in the graphene/Si Schottky barrier cell.They also argued that the instability of our devices were related to variation in series resistance reduced at the beginning due to slightly lowered Fermi level and increased at the end by the serf-compensation by deep in-diffusion of Au nanoparticles.But for our fabricated devices,we know that an oxide layer covered the Si surface,which makes it difficult for the Au ions to diffuse into the Si layer,due to the continuous growth of SiO2 layer on the Si surface which resulted in series resistance decreasing at first and increasing in the end.
文摘The influence of technological process parameters (aiming angle and implantation energy) on the distributions of dopant concentrations in a silicon substrate is investigated by computer modeling.
文摘目的对比研究海水环境下Ti N及Ti Si N涂层与Al2O3对磨的摩擦磨损行为。方法采用多弧离子镀技术在316L不锈钢及单晶硅片上制备Ti N及Ti Si N涂层。利用场发射扫描电子显微镜(SEM)、X射线衍射仪(XRD)及X射线光电子能谱仪(XPS)分析了涂层的截面形貌及化学组织成分。选择纳米压痕仪测量了Ti N及Ti Si N涂层的硬度及弹性模量,使用UMT-3往复式摩擦试验机研究了人工模拟海水环境下Al2O3与Ti N及Ti Si N涂层对磨后的摩擦磨损行为,并采用扫描电镜(SEM)、电子能谱(EDS)及表面轮廓仪来深入分析了磨痕的摩擦磨损情况。结果研究表明,Ti N涂层的硬度为32.5 GPa,当Si元素掺入涂层以后,Ti Si N涂层的硬度提高到了37 GPa。同时,较之于Ti N涂层,Ti Si N涂层的腐蚀电流密度下降了一个数量级。在摩擦实验中,Ti N涂层的摩擦系数和磨损率分别为0.35和5.21×10-6 mm3/(N·m),而Ti Si N涂层的摩擦系数和磨损率均有明显下降,分别为0.24和1.96×10-6 mm3/(N·m)。结论 Si元素掺杂后能显著提高Ti N涂层在海水环境下的摩擦学性能,主要归因于结构的致密,硬度、韧性、抗腐蚀性的提高及润滑相的形成。