The evolution of stress in evaporated SiO2, used as optical coatings, is investigated experimentally through in situ stress measurement. A typical evolution pattern consisting of five subprocedures (thin film deposit...The evolution of stress in evaporated SiO2, used as optical coatings, is investigated experimentally through in situ stress measurement. A typical evolution pattern consisting of five subprocedures (thin film deposition, stopping deposition, cooling, venting the vacuum chamber, and exposing coated optics to the atmosphere) is put forward. Further investigations into the subprocedures reveal their features. During the deposition stage, the stresses are usually compressive and reach a stable state when the deposited film is thicker than 100 nm. An increment of compressive stress value is observed with the decrease of residual gas pressure or deposition rate. A very low stress of-20 MPa is formed in SiO2 films deposited at 3×10^-2 Pa. After deposition, the stress increases slightly in the compressive direction and is subject to the stabilization in subsequent tens of minutes. In the process of venting and exposure, the compressive component increases rapidly with the admission of room air and then reaches saturation, followed by a logarithmic decrement of the compressive state in the succeeding hours. An initial discussion of these behaviors is given.展开更多
Silicon-rich oxide films with controllable optical constants and properties are deposited by the reactive magnet- ton sputtering method on a Si target. The O/Si atomic ratio x of SiOx is tuned from 0.12 to 1.84 by adj...Silicon-rich oxide films with controllable optical constants and properties are deposited by the reactive magnet- ton sputtering method on a Si target. The O/Si atomic ratio x of SiOx is tuned from 0.12 to 1.84 by adjusting the oxygen flow rate, which is found to be a more effective way to obtain SiOx films compared with changing the oxygen content [O2/(Ar + O2) ratio]. The optical properties of SiOx films can be tuned from semiconductor to dielectric as a function of ratio x. The structures and components are also investigated by an x ray photoelectron spectroscopy analysis of the Si 2p core levels, the results of which exhibit that the structures of SiOx can be thoroughly described by the random bonding model.展开更多
基金supported by the National Natural Science Foundation of China under Grant No.10704078
文摘The evolution of stress in evaporated SiO2, used as optical coatings, is investigated experimentally through in situ stress measurement. A typical evolution pattern consisting of five subprocedures (thin film deposition, stopping deposition, cooling, venting the vacuum chamber, and exposing coated optics to the atmosphere) is put forward. Further investigations into the subprocedures reveal their features. During the deposition stage, the stresses are usually compressive and reach a stable state when the deposited film is thicker than 100 nm. An increment of compressive stress value is observed with the decrease of residual gas pressure or deposition rate. A very low stress of-20 MPa is formed in SiO2 films deposited at 3×10^-2 Pa. After deposition, the stress increases slightly in the compressive direction and is subject to the stabilization in subsequent tens of minutes. In the process of venting and exposure, the compressive component increases rapidly with the admission of room air and then reaches saturation, followed by a logarithmic decrement of the compressive state in the succeeding hours. An initial discussion of these behaviors is given.
基金supported by the National Basic Research Program of China(No.2013CB632104)the National Natural Science Foundation of China(No.61575176)+1 种基金the Natural Science Foundation of the Zhejiang Province of China(No.LZ12F04002)the Research Foundation of the State Key Laboratory of Modern Optical Instrumentation(No.moi20150105)
文摘Silicon-rich oxide films with controllable optical constants and properties are deposited by the reactive magnet- ton sputtering method on a Si target. The O/Si atomic ratio x of SiOx is tuned from 0.12 to 1.84 by adjusting the oxygen flow rate, which is found to be a more effective way to obtain SiOx films compared with changing the oxygen content [O2/(Ar + O2) ratio]. The optical properties of SiOx films can be tuned from semiconductor to dielectric as a function of ratio x. The structures and components are also investigated by an x ray photoelectron spectroscopy analysis of the Si 2p core levels, the results of which exhibit that the structures of SiOx can be thoroughly described by the random bonding model.