Silicon carbide nanotubes(SiCNTs) with special morphology synthesized by supercritical hydrothermal method at 470 C and 8 MPa have been reported in this paper.SiCNTs with special morphology were characterized by tra...Silicon carbide nanotubes(SiCNTs) with special morphology synthesized by supercritical hydrothermal method at 470 C and 8 MPa have been reported in this paper.SiCNTs with special morphology were characterized by transmission electron microscopy(TEM) and high-resolution TEM(HRTEM).There are two kinds of silicon carbide with special morphology:One is oval SiCNTs with small aspect ratio,the other is bamboo cone-shape structure.SiCNTs have been analyzed by fluorescence spectrometer.The results indicate that the SiCNTs have strong photoluminescence(PL) property.The SiCNTs with oval shape are one kind of intermediate state of growth process of nanotube.The growth mechanism of silicon nanotubes has been proposed based on experiment data.The investigations of growth mechanism of SiCNTs with bamboo structure show that the defect produced in the growth process play the important role in SiCNTs with special structure.展开更多
A supercell of a nanotube heterojunction formed by an (8, 0) carbon nanotube (CNT) and an (8, 0) silicon carbide nanotube (SiCNT) is established, in which 96 C atoms and 32 Si atoms are included. The geometry ...A supercell of a nanotube heterojunction formed by an (8, 0) carbon nanotube (CNT) and an (8, 0) silicon carbide nanotube (SiCNT) is established, in which 96 C atoms and 32 Si atoms are included. The geometry optimization and the electronic property of the heterojunction are implemented through the first-principles calculation based on the density functional theory (DFT). The results indicate that the structural rearrangement takes place mainly on the interface and the energy gap of the heterojunction is 0.31 eV, which is narrower than those of the isolated CNT and the isolated SiCNT. By using the average bond energy method, the valence band offset and the conduction band offset are obtained as 0.71 and -0.03 eV, respectively.展开更多
A two-probe system of the heterojunction formed by an (8, 0) carbon nanotube (CNT) and an (8, 0) silicon carbide nanotube (SiCNT) was established based on its optimized structure. By using a method combining n...A two-probe system of the heterojunction formed by an (8, 0) carbon nanotube (CNT) and an (8, 0) silicon carbide nanotube (SiCNT) was established based on its optimized structure. By using a method combining nonequilibrium Green's function (NEGF) with density functional theory (DFF), the transport properties of the het-erojunction were investigated. Our study reveals that the highest occupied molecular orbital (HOMO) has a higher electron density on the CNT section and the lowest unoccupied molecular orbital (LUMO) mainly concentrates on the interface and the SiCNT section. The positive and negative threshold voltages are +1.8 and -2.2 V, respectively.展开更多
The electronic transport properties of the armchair silicon carbide nanotube(SiCNT) are investigated by using the combined nonequilibrium Green's function method with density functional theory.In the equilibrium tr...The electronic transport properties of the armchair silicon carbide nanotube(SiCNT) are investigated by using the combined nonequilibrium Green's function method with density functional theory.In the equilibrium transmission spectrum of the nanotube,a transmission valley of about 2.12 eV is discovered around Fermi energy,which means that the nanotube is a wide band gap semiconductor and consistent with results of first principle calculations. More important,negative differential resistance is found in its current voltage characteristic.This phenomenon originates from the variation of density of states caused by applied bias voltage.These investigations are meaningful to modeling and simulation in silicon carbide nanotube electronic devices.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No.10904106)
文摘Silicon carbide nanotubes(SiCNTs) with special morphology synthesized by supercritical hydrothermal method at 470 C and 8 MPa have been reported in this paper.SiCNTs with special morphology were characterized by transmission electron microscopy(TEM) and high-resolution TEM(HRTEM).There are two kinds of silicon carbide with special morphology:One is oval SiCNTs with small aspect ratio,the other is bamboo cone-shape structure.SiCNTs have been analyzed by fluorescence spectrometer.The results indicate that the SiCNTs have strong photoluminescence(PL) property.The SiCNTs with oval shape are one kind of intermediate state of growth process of nanotube.The growth mechanism of silicon nanotubes has been proposed based on experiment data.The investigations of growth mechanism of SiCNTs with bamboo structure show that the defect produced in the growth process play the important role in SiCNTs with special structure.
基金supported by the National Defense Pre-research Foundation of China (Grant No 9140A08060407DZ0103)
文摘A supercell of a nanotube heterojunction formed by an (8, 0) carbon nanotube (CNT) and an (8, 0) silicon carbide nanotube (SiCNT) is established, in which 96 C atoms and 32 Si atoms are included. The geometry optimization and the electronic property of the heterojunction are implemented through the first-principles calculation based on the density functional theory (DFT). The results indicate that the structural rearrangement takes place mainly on the interface and the energy gap of the heterojunction is 0.31 eV, which is narrower than those of the isolated CNT and the isolated SiCNT. By using the average bond energy method, the valence band offset and the conduction band offset are obtained as 0.71 and -0.03 eV, respectively.
基金supported by the Pre-Research Foundation from the National Ministries and Commissions(No.51308040203)
文摘A two-probe system of the heterojunction formed by an (8, 0) carbon nanotube (CNT) and an (8, 0) silicon carbide nanotube (SiCNT) was established based on its optimized structure. By using a method combining nonequilibrium Green's function (NEGF) with density functional theory (DFF), the transport properties of the het-erojunction were investigated. Our study reveals that the highest occupied molecular orbital (HOMO) has a higher electron density on the CNT section and the lowest unoccupied molecular orbital (LUMO) mainly concentrates on the interface and the SiCNT section. The positive and negative threshold voltages are +1.8 and -2.2 V, respectively.
基金Project supported by the National Pre-Research Foundation of China(No.51308030201)
文摘The electronic transport properties of the armchair silicon carbide nanotube(SiCNT) are investigated by using the combined nonequilibrium Green's function method with density functional theory.In the equilibrium transmission spectrum of the nanotube,a transmission valley of about 2.12 eV is discovered around Fermi energy,which means that the nanotube is a wide band gap semiconductor and consistent with results of first principle calculations. More important,negative differential resistance is found in its current voltage characteristic.This phenomenon originates from the variation of density of states caused by applied bias voltage.These investigations are meaningful to modeling and simulation in silicon carbide nanotube electronic devices.