Mo silicides Mo_5Si_3 with high quality were prepared using ion beamdeposition equipment with two Filter Metal Vacuum Are Deposition (FMEVAD). When the number ofalternant deposition times was 198, total thickness of t...Mo silicides Mo_5Si_3 with high quality were prepared using ion beamdeposition equipment with two Filter Metal Vacuum Are Deposition (FMEVAD). When the number ofalternant deposition times was 198, total thickness of the coating is 40nm. The coatings withdroplet free can be readily obtained, so the surface is smooth. TEM observation shows that Mo and Sialternant deposition coating is compact structure. The fine Mo silicide grains densely distributedin the coating. The coating adherence on silicon is excellent.展开更多
A high-entropy silicide(HES),(Ti_(0.2) Zr_(0.2) Nb_(0.2) Mo_(0.2) W_(0.2))Si_2 with close-packed hexagonal structure is successfully manufactured through reactive spark plasma sintering at 1300 ℃ for 15 min.The eleme...A high-entropy silicide(HES),(Ti_(0.2) Zr_(0.2) Nb_(0.2) Mo_(0.2) W_(0.2))Si_2 with close-packed hexagonal structure is successfully manufactured through reactive spark plasma sintering at 1300 ℃ for 15 min.The elements in this HES are uniformly distributed in the specimen based on the energy dispersive spectrometer analysis except a small amount of zirconium that is combined with oxygen as impurity particles. The Young's modulus, Poisson's ratio,and Vickers hardness of the obtained(Ti_(0.2) Zr_(0.2) Nb_(0.2) Mo_(0.2) W_(0.2))Si_2 are also measured.展开更多
A high-entropy metal disilicide,(Mo_(0.2)Nb_(0.2)Ta_(0.2)Ti_(0.2)W_(0.2))Si_(2),has been successfully synthesized.X-ray diffraction(XRD),energy dispersive X-ray spectroscopy(EDX),and electron backscatter diffraction(E...A high-entropy metal disilicide,(Mo_(0.2)Nb_(0.2)Ta_(0.2)Ti_(0.2)W_(0.2))Si_(2),has been successfully synthesized.X-ray diffraction(XRD),energy dispersive X-ray spectroscopy(EDX),and electron backscatter diffraction(EBSD)collectively show the formation of a single high-entropy silicide phase.This high-entropy(Mo_(0.2)Nb_(0.2)Ta_(0.2)Ti_(0.2)W_(0.2))Si_(2) possesses a hexagonal C40 crystal structure with ABC stacking sequence and a space group of P6222.This discovery expands the known families of high-entropy materials from metals,oxides,borides,carbides,and nitrides to a silicide,for the first time to our knowledge,as well as demonstrating that a new,non-cubic,crystal structure(with lower symmetry)can be made into highentropy phase.This(Mo_(0.2)Nb_(0.2)Ta_(0.2)Ti_(0.2)W_(0.2))Si_(2) exhibits high nanohardness of 16.7±1.9 GPa and Vickers hardness of 11.6±0.5 GPa.Moreover,it has a low thermal conductivity of 6.9±1.1Wm^(-1) K^(-1),which is approximately one order of magnitude lower than that of the widely-used tetragonal MoSi_(2) and ~1/3 of those reported values for the hexagonal NbSi_(2) and TaSi_(2) with the same crystal structure.展开更多
Developing electromagnetic(EM) wave absorbing materials with low reflection coefficient and optimal operating frequency band is urgently needed on account of the increasingly serious EM pollution. However, the applica...Developing electromagnetic(EM) wave absorbing materials with low reflection coefficient and optimal operating frequency band is urgently needed on account of the increasingly serious EM pollution. However, the applications of common EM absorbing materials are encumbered by poor high-temperature stability, poor oxidation resistance, narrow absorption bandwidth or high density. Herein, the strong EM absorption capability and wide efficient absorption bandwidth of high entropy ceramics are reported for the first time, which are designed by a combination of the novel high entropy(HE) rare earth silicide carbides/rare earth oxides(RE3 Si2 C2/RE2 O3). Three HE powders, i.e., HERSC-1(HE(Tm0.2 Y0.2 Dy0.2 Gd0.2 Tb0.2)3 Si2 C2),HERSC-2 HE(Tm0.2 Y0.2 Dy0.2 Gd0.2 Tb0.2)3 Si2 C2/HE(Tm0.2 Y0.2 Dy0.2 Gd0.2 Tb0.2)2 O3) and HERSC-3(HE(Tm0.2 Y0.2 Dy0.2 Gd0.2 Tb0.2)3 Si2 C2/HE(Tm0.2 Y0.2 Dy0.2 Gd0.2 Tb0.2)2 O3), are synthesized. Although HERSC-1 exhibits a limited absorption effect(the minimum reflection loss(RLmin) is-11.6 d B at 3.4 mm) and a relatively narrow effective absorption bandwidth(EAB) of 1.7 GHz, the optimal absorption RLminvalue and EAB of HERSC-2 and HERSC-3 are-40.7 d B(at 2.9 mm), 3.4 GHz and-50.9 d B(at 2.0 mm), 4.5 GHz,respectively, demonstrating strong microwave absorption capability and wide absorption bandwidth.Considering the better stability, low density and strong EM absorption effect, HE ceramics are promising as a new type of EM absorbing materials.展开更多
In order to improve mechanical properties of refractory high entropy alloys,silicide was introduced and NbMoTiVSi_(x)(x=0,0.1,0.2,0.3,and 0.4,molar ratio) refractory high entropy alloys are prepared by vacuum arc melt...In order to improve mechanical properties of refractory high entropy alloys,silicide was introduced and NbMoTiVSi_(x)(x=0,0.1,0.2,0.3,and 0.4,molar ratio) refractory high entropy alloys are prepared by vacuum arc melting.Phase composition,micro structure evolution and mechanical properties were systematically studied.Results show that the silicide phase is formed in the alloys with addition of silicon,and the volume fraction of silicide increases from 0 to 8.3 % with increasing of silicon.Microstructure observation shows that the morphology of dendrite changes from columnar to near equiaxed,eutectic structure is formed at grain boundaries and composed of secondary BCC phase and silicide phase.The average length of the primary and second dendrites decreases with the increasing of silicon.Whereas,the ratio of eutectic structure increases from 0 to 19.8 % with the increment of silicon.The refinement of microstructure is caused by heterogeneous nucleation from the silicide.Compressive tests show that the yield and ultimate strength of the alloys increases from 1141.5 MPa to 2093.1 MPa and from 1700.1 MPa to 2374.7 MPa with increasing silicon content.The fracture strain decreases from 24.7 %-11.0 %.Fracture mechanism is changed from ductile fracture to ductile and brittle mixed fracture.The improvement of the strength is caused by grain bounda ry strengthening,which includes more boundaries around primary BCC phase and eutectic structure in grain boundary,both of them is resulted from the formation of silicide.展开更多
基金This work was supported by 863 High Science & Technology Committee(2001AA38020) The National Natural Science Foundation of
文摘Mo silicides Mo_5Si_3 with high quality were prepared using ion beamdeposition equipment with two Filter Metal Vacuum Are Deposition (FMEVAD). When the number ofalternant deposition times was 198, total thickness of the coating is 40nm. The coatings withdroplet free can be readily obtained, so the surface is smooth. TEM observation shows that Mo and Sialternant deposition coating is compact structure. The fine Mo silicide grains densely distributedin the coating. The coating adherence on silicon is excellent.
基金Financial support from the National Natural Science Foundation of China (Nos. 51532009 and 51872045)the Science and Technology Commission of Shanghai Municipality (No. 18ZR1401400) are gratefully acknowledged
文摘A high-entropy silicide(HES),(Ti_(0.2) Zr_(0.2) Nb_(0.2) Mo_(0.2) W_(0.2))Si_2 with close-packed hexagonal structure is successfully manufactured through reactive spark plasma sintering at 1300 ℃ for 15 min.The elements in this HES are uniformly distributed in the specimen based on the energy dispersive spectrometer analysis except a small amount of zirconium that is combined with oxygen as impurity particles. The Young's modulus, Poisson's ratio,and Vickers hardness of the obtained(Ti_(0.2) Zr_(0.2) Nb_(0.2) Mo_(0.2) W_(0.2))Si_2 are also measured.
基金the partial financial support from an Office of Naval Research MURI program(grant no.N00014-15-1-2863,Program Mangers:Dr.Kenny Lipkowitz and Dr.Eric Wuchina)funding from the National Science Foundation,Grant No.CBET-1706388supported by the Deparment of Defense(DoD)through the National Defense Science and Engineering Graduate Fellowship(NDSEG)program as well as the ARCS foundation.
文摘A high-entropy metal disilicide,(Mo_(0.2)Nb_(0.2)Ta_(0.2)Ti_(0.2)W_(0.2))Si_(2),has been successfully synthesized.X-ray diffraction(XRD),energy dispersive X-ray spectroscopy(EDX),and electron backscatter diffraction(EBSD)collectively show the formation of a single high-entropy silicide phase.This high-entropy(Mo_(0.2)Nb_(0.2)Ta_(0.2)Ti_(0.2)W_(0.2))Si_(2) possesses a hexagonal C40 crystal structure with ABC stacking sequence and a space group of P6222.This discovery expands the known families of high-entropy materials from metals,oxides,borides,carbides,and nitrides to a silicide,for the first time to our knowledge,as well as demonstrating that a new,non-cubic,crystal structure(with lower symmetry)can be made into highentropy phase.This(Mo_(0.2)Nb_(0.2)Ta_(0.2)Ti_(0.2)W_(0.2))Si_(2) exhibits high nanohardness of 16.7±1.9 GPa and Vickers hardness of 11.6±0.5 GPa.Moreover,it has a low thermal conductivity of 6.9±1.1Wm^(-1) K^(-1),which is approximately one order of magnitude lower than that of the widely-used tetragonal MoSi_(2) and ~1/3 of those reported values for the hexagonal NbSi_(2) and TaSi_(2) with the same crystal structure.
基金financially supported by the National Natural Science Foundation of China(Nos.51672064 and 51972089)。
文摘Developing electromagnetic(EM) wave absorbing materials with low reflection coefficient and optimal operating frequency band is urgently needed on account of the increasingly serious EM pollution. However, the applications of common EM absorbing materials are encumbered by poor high-temperature stability, poor oxidation resistance, narrow absorption bandwidth or high density. Herein, the strong EM absorption capability and wide efficient absorption bandwidth of high entropy ceramics are reported for the first time, which are designed by a combination of the novel high entropy(HE) rare earth silicide carbides/rare earth oxides(RE3 Si2 C2/RE2 O3). Three HE powders, i.e., HERSC-1(HE(Tm0.2 Y0.2 Dy0.2 Gd0.2 Tb0.2)3 Si2 C2),HERSC-2 HE(Tm0.2 Y0.2 Dy0.2 Gd0.2 Tb0.2)3 Si2 C2/HE(Tm0.2 Y0.2 Dy0.2 Gd0.2 Tb0.2)2 O3) and HERSC-3(HE(Tm0.2 Y0.2 Dy0.2 Gd0.2 Tb0.2)3 Si2 C2/HE(Tm0.2 Y0.2 Dy0.2 Gd0.2 Tb0.2)2 O3), are synthesized. Although HERSC-1 exhibits a limited absorption effect(the minimum reflection loss(RLmin) is-11.6 d B at 3.4 mm) and a relatively narrow effective absorption bandwidth(EAB) of 1.7 GHz, the optimal absorption RLminvalue and EAB of HERSC-2 and HERSC-3 are-40.7 d B(at 2.9 mm), 3.4 GHz and-50.9 d B(at 2.0 mm), 4.5 GHz,respectively, demonstrating strong microwave absorption capability and wide absorption bandwidth.Considering the better stability, low density and strong EM absorption effect, HE ceramics are promising as a new type of EM absorbing materials.
基金supported by National Natural Science Foundation of China(Grant No.51825401,51971121)Fundamental Research Funds of Henan University of Technology(Grant No.2018QNJH25)+1 种基金Scientific Research Fund of State Key Laboratory of Materials Processing and Die&Mould Technology(Grant No.P2020-023)the Program for Guangdong Introducing Innovative and Entrepreneurial Teams(NO:2016ZT06G025)。
文摘In order to improve mechanical properties of refractory high entropy alloys,silicide was introduced and NbMoTiVSi_(x)(x=0,0.1,0.2,0.3,and 0.4,molar ratio) refractory high entropy alloys are prepared by vacuum arc melting.Phase composition,micro structure evolution and mechanical properties were systematically studied.Results show that the silicide phase is formed in the alloys with addition of silicon,and the volume fraction of silicide increases from 0 to 8.3 % with increasing of silicon.Microstructure observation shows that the morphology of dendrite changes from columnar to near equiaxed,eutectic structure is formed at grain boundaries and composed of secondary BCC phase and silicide phase.The average length of the primary and second dendrites decreases with the increasing of silicon.Whereas,the ratio of eutectic structure increases from 0 to 19.8 % with the increment of silicon.The refinement of microstructure is caused by heterogeneous nucleation from the silicide.Compressive tests show that the yield and ultimate strength of the alloys increases from 1141.5 MPa to 2093.1 MPa and from 1700.1 MPa to 2374.7 MPa with increasing silicon content.The fracture strain decreases from 24.7 %-11.0 %.Fracture mechanism is changed from ductile fracture to ductile and brittle mixed fracture.The improvement of the strength is caused by grain bounda ry strengthening,which includes more boundaries around primary BCC phase and eutectic structure in grain boundary,both of them is resulted from the formation of silicide.