The effect of particle shape on the rheological behavior of small particle-large polymer chain mixture solutions has been investigated with two model colloidal silica dispersions, one of which is ellipsoidal(BINDZIL2...The effect of particle shape on the rheological behavior of small particle-large polymer chain mixture solutions has been investigated with two model colloidal silica dispersions, one of which is ellipsoidal(BINDZIL20/440) and the other is spherical(TM40). It was found that BINDZIL20/440 series showed shear-thickening at lower shear rates and had a lower upper limit in PEO concentration to demonstrate shear-thickening phenomena. The particle shape was identified as the major factor accounting for these differences. This work enables one to control the rheological behavior of colloid-polymer mixture through simply changing particle geometry instead of performing surface modifications, which could be especially useful in cases where only certain chemicals are allowed, for example in vivo applications.展开更多
We demonstrated a simple and effective dual-templating approach for the synthesis of hierarchically mesocellular carbon foams by using nonionic surfactant of sorbitan monooleate and silica colloid particles as sacrifi...We demonstrated a simple and effective dual-templating approach for the synthesis of hierarchically mesocellular carbon foams by using nonionic surfactant of sorbitan monooleate and silica colloid particles as sacrificial templates, and resorcinol/ formaldehyde as carbon source. The representative carbon foam has dual mesopore sizes of 4 and 10 nm, and possesses the specific surface area of 580 m^2/g and the total pore volume of 0.80 cm^3/g.展开更多
基金supported by the Institute of Chemistry,Chinese Academy of Sciences through the"Young Excellence Project",the"Knowledge Innovation Program of the Chinese Academy of Sciences"(No.KJCX2-YW-H19)National Natural Science Foundation of China(No.91027032)+1 种基金National Key Technology R&D Program of China(No.2011BAI02B05)State Key Development Program of Basic Research of China(No.2012CB933200)
文摘The effect of particle shape on the rheological behavior of small particle-large polymer chain mixture solutions has been investigated with two model colloidal silica dispersions, one of which is ellipsoidal(BINDZIL20/440) and the other is spherical(TM40). It was found that BINDZIL20/440 series showed shear-thickening at lower shear rates and had a lower upper limit in PEO concentration to demonstrate shear-thickening phenomena. The particle shape was identified as the major factor accounting for these differences. This work enables one to control the rheological behavior of colloid-polymer mixture through simply changing particle geometry instead of performing surface modifications, which could be especially useful in cases where only certain chemicals are allowed, for example in vivo applications.
基金supported by the National Natural Science Foundation of China(Nos.20473057 and 20673076)Shanghai Nanotechnology Promotion Center(Nos.0652nm030 and 0752nm006).
文摘We demonstrated a simple and effective dual-templating approach for the synthesis of hierarchically mesocellular carbon foams by using nonionic surfactant of sorbitan monooleate and silica colloid particles as sacrificial templates, and resorcinol/ formaldehyde as carbon source. The representative carbon foam has dual mesopore sizes of 4 and 10 nm, and possesses the specific surface area of 580 m^2/g and the total pore volume of 0.80 cm^3/g.