期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
融合轮廓增强和注意力机制的改进GaitSet步态识别方法
1
作者 陈万志 唐浩博 王天元 《电子测量与仪器学报》 CSCD 北大核心 2024年第1期203-210,共8页
针对传统基于轮廓的步态识别方法受限于输入特征及模型特征提取的能力,从而导致识别准确率不高的问题,提出一种融合轮廓增强和注意力机制的改进GaitSet步态识别方法。首先通过预处理获取行人的轮廓图,求得其均值,合成步态GEI能量图,将... 针对传统基于轮廓的步态识别方法受限于输入特征及模型特征提取的能力,从而导致识别准确率不高的问题,提出一种融合轮廓增强和注意力机制的改进GaitSet步态识别方法。首先通过预处理获取行人的轮廓图,求得其均值,合成步态GEI能量图,将其作为神经网络模型的输入特征,增强了人体外观的表示。其次在提取特征的过程中引入注意力机制,增强模型的特征提取能力,从而提高步态识别的精度。最后在CASIA-B和OU-MVLP数据集上进行实验,所提方法的平均Rank-1准确率分别为87.7%和88.1%。特别是在最复杂的穿大衣行走条件下,相较于GaitSetv2算法,准确率提升了6.7%,表明所提出方法具有更强的准确性。此外,所提方法几乎没有增加额外的参数量、计算复杂度和推理时间,说明其各模块的快速性。 展开更多
关键词 步态识别 交叉视角 深度学习 轮廓增强 注意力机制
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部