期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
融合轮廓增强和注意力机制的改进GaitSet步态识别方法
1
作者
陈万志
唐浩博
王天元
《电子测量与仪器学报》
CSCD
北大核心
2024年第1期203-210,共8页
针对传统基于轮廓的步态识别方法受限于输入特征及模型特征提取的能力,从而导致识别准确率不高的问题,提出一种融合轮廓增强和注意力机制的改进GaitSet步态识别方法。首先通过预处理获取行人的轮廓图,求得其均值,合成步态GEI能量图,将...
针对传统基于轮廓的步态识别方法受限于输入特征及模型特征提取的能力,从而导致识别准确率不高的问题,提出一种融合轮廓增强和注意力机制的改进GaitSet步态识别方法。首先通过预处理获取行人的轮廓图,求得其均值,合成步态GEI能量图,将其作为神经网络模型的输入特征,增强了人体外观的表示。其次在提取特征的过程中引入注意力机制,增强模型的特征提取能力,从而提高步态识别的精度。最后在CASIA-B和OU-MVLP数据集上进行实验,所提方法的平均Rank-1准确率分别为87.7%和88.1%。特别是在最复杂的穿大衣行走条件下,相较于GaitSetv2算法,准确率提升了6.7%,表明所提出方法具有更强的准确性。此外,所提方法几乎没有增加额外的参数量、计算复杂度和推理时间,说明其各模块的快速性。
展开更多
关键词
步态识别
交叉视角
深度学习
轮廓增强
注意力机制
下载PDF
职称材料
题名
融合轮廓增强和注意力机制的改进GaitSet步态识别方法
1
作者
陈万志
唐浩博
王天元
机构
辽宁工程技术大学软件学院
国网辽宁省电力有限公司营口供电公司
出处
《电子测量与仪器学报》
CSCD
北大核心
2024年第1期203-210,共8页
基金
辽宁省教育厅高校科研基金(2021LJKZ0327)
中国学位与研究生教育学会面上项目(2020MSA63)资助。
文摘
针对传统基于轮廓的步态识别方法受限于输入特征及模型特征提取的能力,从而导致识别准确率不高的问题,提出一种融合轮廓增强和注意力机制的改进GaitSet步态识别方法。首先通过预处理获取行人的轮廓图,求得其均值,合成步态GEI能量图,将其作为神经网络模型的输入特征,增强了人体外观的表示。其次在提取特征的过程中引入注意力机制,增强模型的特征提取能力,从而提高步态识别的精度。最后在CASIA-B和OU-MVLP数据集上进行实验,所提方法的平均Rank-1准确率分别为87.7%和88.1%。特别是在最复杂的穿大衣行走条件下,相较于GaitSetv2算法,准确率提升了6.7%,表明所提出方法具有更强的准确性。此外,所提方法几乎没有增加额外的参数量、计算复杂度和推理时间,说明其各模块的快速性。
关键词
步态识别
交叉视角
深度学习
轮廓增强
注意力机制
Keywords
gait
recognition
cross-view
deep
learning
silhouette
enhancement
attention
mechanism
分类号
TP18 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
融合轮廓增强和注意力机制的改进GaitSet步态识别方法
陈万志
唐浩博
王天元
《电子测量与仪器学报》
CSCD
北大核心
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部