Data transmission through a wireless network has faced various signal problems in the past decades.The orthogonal frequency division multiplexing(OFDM)technique is widely accepted in multiple data transfer patterns at...Data transmission through a wireless network has faced various signal problems in the past decades.The orthogonal frequency division multiplexing(OFDM)technique is widely accepted in multiple data transfer patterns at various frequency bands.A recent wireless communication network uses OFDM in longterm evolution(LTE)and 5G,among others.The main problem faced by 5G wireless OFDM is distortion of transmission signals in the network.This transmission loss is called peak-to-average power ratio(PAPR).This wireless signal distortion can be reduced using various techniques.This study uses machine learning-based algorithm to solve the problem of PAPR in 5G wireless communication.Partial transmit sequence(PTS)helps in the fast transfer of data in wireless LTE.PTS is merged with deep belief neural network(DBNet)for the efficient processing of signals in wireless 5G networks.Result indicates that the proposed system outperforms other existing techniques.Therefore,PAPR reduction in OFDM by DBNet is optimized with the help of an evolutionary algorithm called particle swarm optimization.Hence,the specified design supports in improving the proposed PAPR reduction architecture.展开更多
A method of space-time block coding (STBC) system based on adaptive beamforming of cyclostationarity signal algorithm is proposed.The method uses cyclostationarity of signals to achieve adaptive beamforming,then con...A method of space-time block coding (STBC) system based on adaptive beamforming of cyclostationarity signal algorithm is proposed.The method uses cyclostationarity of signals to achieve adaptive beamforming,then constructs a pair of low correlated transmit beams based on beamform estimation of multiple component signals of uplink.Using these two selected transmit beams,signals encoded by STBC are transmitted to achieve diversity gain and beamforming gain at the same time,and increase the signal to noise ratio (SNR) of downlink.With simple computation and fast convergence performance,the proposed scheme is applicable for time division multiple access (TDMA) wireless communication operated in a complex interference environment.Simulation results show that the proposed scheme has better performance than conventional STBC,and can obtain a gain of about 5 dB when the bit error ratio (BER) is 10-4.展开更多
文摘Data transmission through a wireless network has faced various signal problems in the past decades.The orthogonal frequency division multiplexing(OFDM)technique is widely accepted in multiple data transfer patterns at various frequency bands.A recent wireless communication network uses OFDM in longterm evolution(LTE)and 5G,among others.The main problem faced by 5G wireless OFDM is distortion of transmission signals in the network.This transmission loss is called peak-to-average power ratio(PAPR).This wireless signal distortion can be reduced using various techniques.This study uses machine learning-based algorithm to solve the problem of PAPR in 5G wireless communication.Partial transmit sequence(PTS)helps in the fast transfer of data in wireless LTE.PTS is merged with deep belief neural network(DBNet)for the efficient processing of signals in wireless 5G networks.Result indicates that the proposed system outperforms other existing techniques.Therefore,PAPR reduction in OFDM by DBNet is optimized with the help of an evolutionary algorithm called particle swarm optimization.Hence,the specified design supports in improving the proposed PAPR reduction architecture.
文摘A method of space-time block coding (STBC) system based on adaptive beamforming of cyclostationarity signal algorithm is proposed.The method uses cyclostationarity of signals to achieve adaptive beamforming,then constructs a pair of low correlated transmit beams based on beamform estimation of multiple component signals of uplink.Using these two selected transmit beams,signals encoded by STBC are transmitted to achieve diversity gain and beamforming gain at the same time,and increase the signal to noise ratio (SNR) of downlink.With simple computation and fast convergence performance,the proposed scheme is applicable for time division multiple access (TDMA) wireless communication operated in a complex interference environment.Simulation results show that the proposed scheme has better performance than conventional STBC,and can obtain a gain of about 5 dB when the bit error ratio (BER) is 10-4.